• Title/Summary/Keyword: 2-dimensional measurement

Search Result 924, Processing Time 0.032 seconds

A Study on a Pattern Design for Pleated Skirts Based on the Amount of Waist Darts by Somatotype (체형별 허리 다트량을 활용한 플리츠 스커트 원형 설계에 관한 연구)

  • Lee, Jung-Hwa;Maruta, Naomi;Hirokawa, Taeko
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.8
    • /
    • pp.933-945
    • /
    • 2011
  • This research proposes a pattern design method for 24 pleated skirts in order to develop an automatic draft program for pleated skirts that will enhance fit and enable mass production. The research method and results are outlined as follow. 1. Three-dimensional body measurements were conducted on 30 randomly selected women in their 20s. By using 34 body measurement items and 6 types of calculations among the items, the items required in the designing of an original pleated skirt were extracted. They were then interpreted through correlation analysis, variance analysis, a t-test, linear regression analysis and multiple regression analysis. 2. An extra amount was added to the waist measurement and external capsule measurement according to the number of times the pleats coincided and the thickness of the fabric by the degree of polymerization of the horizontal cross section (the test of this research: 0.518mm). The extra amount of waist measurement was 3.6cm while the hip measurement was 4.3cm larger than the hip measurement combined with the external capsule measurement and the extra amount. 3. Based on the ${\pm}$standard deviation/2 as the average of the difference between the external capsule measurement and waist measurement, the subjects were classified into 3 somatotypes. Somatotype 1 presented an average total length of waist darts of 23.6cm while that of somatotype 2 was 26.2cm and that of somatotype 3 was 30.2cm. It has been confirmed that there is a significant difference among somatotypes in the total length of waist darts from the front center to the front side and the total length of waist darts from the side to the back center in terms of the average amount of waist darts for every 12 parts on the WL.

Demonstration of Developed Numerical Procedure to Describe 3-dimensional Long-term Behavior of the Pleistocene Marine Foundations (Pleistocene 해저지반의 3차원 장기거동 해석을 위해 개발한 수치해석 기법의 입증)

  • Yun, Seong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.7
    • /
    • pp.5-14
    • /
    • 2020
  • Kansai International Airport (KIX) was opened in September 1994. Although 26 years have passed since the completion of the first island, long-term settlement is still in progress. This settlement occurs in the Pleistocene layer. For it is not easy to determine the permeability of the Pleistocene sand layer because the thickness and the degree of fine content in the horizontal direction are constantly changing. In addition, it is also a difficult to predict the interactive behavior of the ground due to the construction of the second phase island adjacent to it. In order to solve this problem, a two-dimensional finite element analysis considering elasto-viscoplastic was performed to evaluate the long-term deformation, including the interactive behavior of the alternating Pleistocene foundation due to the construction of two adjacent reclaimed islands. In general, two-dimensional analysis can be used when a section can represent the entire sections. However, Kansai Airport is an artificial reclaimed island so two-dimensional analysis cannot solve the problem such as the stress deformation in the corners of the island. Additionally, the structure of the actual sub-ground through physical exploration is non-homogeneity and its thickness is also not constant. Therefore, there are limitations for the two-dimensional analysis to explain the phenomena. That is, three-dimensional analysis is strongly required. Due to these demands, the author extended the existing two-dimensional program capable of elasto-viscoplastic analysis to three-dimensional and completed the verification of the three-dimensional program developed through one-dimensional consolidation analysis. In order to demonstrate the validity of the developed 3D program that has been verified, an analysis is performed under the same analysis conditions as the existing research using a two-dimensional program. The effectiveness of the developed 3D numerical analysis program was demonstrated by comparing the analysis results with the 2D results and actual measurement data.

Angular-based Measurement for Quantitative assay of Albumin in three-dimensional Paper-based analytical Device (회전각도를 이용한 알부민 농도 측정용 3차원 종이 칩)

  • Kim, Dong-Ho;Jeong, Seong-Geun;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.286-292
    • /
    • 2020
  • This study presents an angular-based measurement on three-dimensional paper-based analytical devices (3D-PADs) for quantitative detection of albumin without using an image analyzer. We demonstrate a simple quantitative and straightforward approach based on the angle of the discolored area as detection criteria. 3D-PADs are rapidly fabricated by the wax-printing and laminating process. The 3D-PADs are treated with citrate buffer and tetrabromophenol blue to react with albumin in a sample solution. Dropping sample solution into sample pad in the 3D-PAD, fluid flows toward the assay zone laterally and vertically by capillary action. We find that the change of angle of the discolored area correctly reflects the concentration of albumin and is reliable determinant for the measurement of the albumin concentration. It is the first demonstration of angular-based detection as a simple, inexpensive, and equipment-free approach for point-of-care diagnosis.

Measurement of Material Deformation Using Laser Speckle (레이저 스페클을 이용한 재료 변형 측정)

  • 전문창;강기주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.688-694
    • /
    • 2002
  • As a tool for strain measurement to work with screw driven or hydraulic material test systems, in which mechanical vibration is inherent, SSDG(Speckle Strain/Displacement Gage), ESP(Electronic Speckle Photography) and its 3-dimension version SDSP are investigated for the theory and practical appliance. Through tension test of steel strips, their validity and shortcomings are examined. As the results, it has been shown that, although SSDG and ESP provide direct measurement of in-plane strain in one direction, they are so sensitive to the out-plane displacement. On the other hand, SDSP which is aided with DIC (Digital Image Correlation) technique to trace the movement of the speckles provides not only in-plane 2-dimensional displacement field, but also out-of-plane displacement simultaneously. However, because the DIC is time-consuming, not automated yet and it needs post-processing to evaluate strain from the displacement field, SDSP appears to be not adequate as a real time sensor.

  • PDF

On-Machine Measurement Error Compensation Using Ball-bar System (볼바 시스템을 이용한 기상측정오차 보정)

  • 이세희;서태일;조명우
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.56-63
    • /
    • 2001
  • The objective of this research is to develop a measurement error compensation method for On-Machine Measurement (OMM) process based on a closed-loop configuration. Geometric errors of vertical machining center are measured using ball-bar system, and probing errors are measured using master ball. The errors are represented using homogeneous trans-formation matrices and the closed-loop configuration method is applied to calculate 3-dimensional errors. To verify the effectiveness of the method proposed in this research, compensated results are compared to the data using CMM process, and the results are analyzed. The results show the proposed method can be applied in OMM process to make the measured data more reliable.

  • PDF

Three-Dimensional Fluid Flow Analysis of Photoacoustic Spectroscopy Cell for Measurement of Automotive Exhaust Gas (자동차 배출가스 측정을 위한 Photoacoustic Spectroscopy Cell의 3차원 유동장 해석)

  • 김현철;박종호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.111-118
    • /
    • 2003
  • Recently, environmental damage to urban area becomes serious problem due to the exhaust emissions by increasing the number of vehicle. Especially, exhaust emission from diesel vehicles are blown to be harmful to human health and environment. Photoacoustic Spectroscopy system is very useful technology for simultaneous and continuous measurement of the various components of the automotive exhaust gas. In this study, in order to reduce emission gases from automobile, we tried to develop the measurement system of Photoacoustic Spectroscopy. To improve performance of high sensitive Photoacoustic Spectroscopy system for automotive exhaust emissions, the shape of Photoacoustic Spectroscopy cell was optimized to use the flow analysis. And Exhaust emission data of the 1,500cc gasoline engine was fixed the working fluid. The characteristics of fluid flow for cell were analyzed by various conditions in detail.

High precision 3-dimensional object measurement using slit type of laser projector (슬리트형 레이저 투광기를 이용한 고정밀 3차원 물체계측)

  • Kim, Tae-Hyo;Park, Young-Seok;Lee, Chuy-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.613-618
    • /
    • 1997
  • In this paper, we designed a line CCD camera for a flying image, which is composed of a line CCD sensor(2048 cells) and a rotating mirror, and investigated its optical properties. We also made the 3-D image from the flying image which is made of 2-D image being juxtaposed to 1-D images obtained by the camera, and performed the calibration to acquire high precision 3-D data. As a result, we obtained the 3-D measurement system using the slit type of laser projector is available to measure the high precision shape of objects.

  • PDF

Effect of polymerization method and fabrication method on occlusal vertical dimension and occlusal contacts of complete-arch prosthesis

  • Lima, Ana Paula Barbosa;Vitti, Rafael Pino;Amaral, Marina;Neves, Ana Christina Claro;Concilio, Lais Regiane da Silva
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.122-127
    • /
    • 2018
  • PURPOSE. This study evaluated the dimensional stability of a complete-arch prosthesis processed by conventional method in water bath or microwave energy and polymerized by two different curing cycles. MATERIALS AND METHODS. Forty maxillary complete-arch prostheses were randomly divided into four groups (n = 10): MW1 - acrylic resin cured by one microwave cycle; MW2 - acrylic resin cured by two microwave cycles: WB1 - conventional acrylic resin polymerized using one curing cycle in a water bath; WB2 - conventional acrylic resin polymerized using two curing cycles in a water bath. For evaluation of dimensional stability, occlusal vertical dimension (OVD) and area of contact points were measured in two different measurement times: before and after the polymerization method. A digital caliper was used for OVD measurement. Occlusal contact registration strips were used between maxillary and mandibular dentures to measure the contact points. The images were measured using the software IpWin32, and the differences before and after the polymerization methods were calculated. The data were statistically analyzed using the one-way ANOVA and Tukey test (${\alpha}=.05$). RESULTS. The results demonstrated significant statistical differences for OVD between different measurement times for all groups. MW1 presented the highest OVD values, while WB2 had the lowest OVD values (P<.05). No statistical differences were found for area of contact points among the groups (P=.7150). CONCLUSION. The conventional acrylic resin polymerized using two curing cycles in a water bath led to less difference in OVD of complete-arch prosthesis.

Measurement of Heat (Mass) Transfer Coefficient on the Blade Surfaces of a Linear Turbine Rotor Cascade With a Four-Axis Naphthalene Profile Measuring System (4-축 나프탈렌 승화깊이 측정시스템을 이용한 터빈 블레이드 표면에서의 열(물질)전달계수 측정)

  • Kwon, Hyun-Goo;Lee, Sang-Woo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.42-47
    • /
    • 2001
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade for power generation has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is successfully developed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiment is carried out at the free-stream Reynolds number and turbulence intensity of $2.09\times10^5$ and 1.2%. The results on the blade surfaces show that the local heat (mass) transfer on the suction surface is strongly influenced by the endwall vortices, but that on the pressure surface shows a nearly two-dimensional nature. The pressure surface has a more uniform distribution of heat load than the suction one.

  • PDF