• Title/Summary/Keyword: 2-dimensional gel electrophoresis

Search Result 216, Processing Time 0.025 seconds

Studies on Intracellular Regulatory Proteins of Pancreatic Exocrine Secretion (이자효소 분비에 관여하는 세포 내 조절 단백에 대한 연구)

  • Chung, Ku-Yong;Choi, Jae-Won;Choi, Hong-Soon;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.243-257
    • /
    • 1996
  • CCK and cholinergic agonist stimulate enzyme release from the pancreatic acini via G-protein-mediated activation of phospholipase C, In contrast secretin and related peptides increase the level of cAMP and activate cAMP-dependent protein kinase. Camostat, a synthetic protease inhibitor, causes pancreatic hypertrophy and hyperplasia by increasing the CCK release. In this study, the secretagogue-induced changes of intracellular proteins were examined in the dispersed pancreatic acini of rats with or without camostat treatment. Camostat(FOY-305, 200 mg/kg, p.o.) was given for 4 days twice daily and the dispersed acini were prepared at 12 bouts after last treatment. The profiles of Intracellular phosphoproteins were analyzed by two-dimensional gel electrophoresis after incubating the acini with $^{32}P$. The amylase release from the dispersed acini was measured. The pancreatic weight was increased to 126% of control, while amylase activity per mg acinar protein decreased to 41% of control, The maximum response of amylase release from dispersed acini to CCK-8 or carbachol was markedly decreased(65% or 46% of control, respectively). The group of intracellular proteins(24 kD, pI $4.5{\sim}8.5$) was increased in quantity by camostat. CCK-8 or secretin increased phosphorylation of a protein(34 kD, pI 4.7) in camostat-treated as well as control rats. CCK-8 increased tyrosine phosphoryiation in the acini of control rats. However, in camostat-treated rats, the basal level of tyrosine phosphorylation was increased and it was rather decreased by CCK-8. Secretin had no effect on the level of tyrosine phosphorylation in acini. These results indicate that both phospholipase C and adenylate cyclase induce phosphorylation of an intracellular acinar protein(34 kD, pI 4.7) and camostat treatment increases the basal level of tyrosine phosphorylation in acinar cells. And these results suggest that not only serine/threonine protein kinase but also protein tyrosine kinase/phosphatase are involved in the process of CCK receptor mediated stimulation-secrelion coupling.

  • PDF

Proteomic and Immunological Identification of Diagnostic Antigens from Spirometra erinaceieuropaei Plerocercoid

  • Lu, Yan;Sun, Jia-Hui;Lu, Li-Li;Chen, Jia-Xu;Song, Peng;Ai, Lin;Cai, Yu-Chun;Li, Lan-Hua;Chen, Shao-Hong
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.6
    • /
    • pp.615-623
    • /
    • 2021
  • Human sparganosis is a food-borne parasitic disease caused by the plerocercoids of Spirometra species. Clinical diagnosis of sparganosis is crucial for effective treatment, thus it is important to identify sensitive and specific antigens of plerocercoids. The aim of the current study was to identify and characterize the immunogenic proteins of Spirometra erinaceieuropaei plerocercoids that were recognized by patient sera. Crude soluble extract of the plerocercoids were separated using 2-dimensional gel electrophoresis coupled with immunoblot and mass spectrometry analysis. Based on immunoblotting patterns and mass spectrometry results, 8 antigenic proteins were identified from the plerocercoid. Among the proteins, cysteine protease protein might be developed as an antigen for diagnosis of sparganosis.

Growth Characteristics and Comparative Proteome Analysis of Adzuki Bean Leaves at the Early Vegetative Stage under Waterlogging Stress (논 토양 조건에서 팥 유묘기의 생육특성과 단백질 발현 양상)

  • Hae-Ryong Jeong;Soo-Jeong Kwon;Sung-Hyun Yun;Min-Young Park;Hee-Ock Boo;Hag-Hyun Kim;Moon-Soon Lee;Sun-Hee Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.211-221
    • /
    • 2022
  • Recently, the demand for the cultivation of upland soil has been increasing, and the rate of conversion of paddy soil into upland soil is also increasing. Theincrease in uneven precipitation due to climate change has resulted in dramatic effects of waterlogging stress on upland crops. Therefore, the present study was conducted to investigate the changes in growth characteristics and the expression patterns of proteins at the two-leaf stage of adzuki beans. The domestic cultivar, Arari (Miryang No. 8), was used to test waterlogging stress. At the two-leaf stage of adzuki beans, plant height slightly decreased androot fresh weight showed significant changes after 3 days of waterlogging treatment. Chlorophyll content was also significantly different after 3 days of waterlogging treatment compared to its content in control plants. Using two-dimensional gel electrophoresis, more than 400 protein spots were identified. Twenty-one differentially expressed proteins from the two-leaf stage were analyzed using linear trap quadrupole-Fourier transform-ion cyclotron resonance mass spectrometry. Of these 21 proteins, 9 were up-regulated and 12 were down-regulated under waterlogging treatment. Protein information resource (https://pir.georgetown.edu/) categories were assigned to all 49 proteins according to their molecular function, cellular component localization, and biological processes. Most of the proteins were found to be involved in the biological process, carbohydrate metabolism and were localized in chloroplasts.

Development of a Simple and Reproducible Method for Removal of Contaminants from Ginseng Protein Samples Prior to Proteomics Analysis (활성탄을 이용한 불순물제거에 의한 효과적인 인삼 조직 단백질체 분석 방법 개선 연구)

  • Gupta, Ravi;Kim, So Wun;Min, Chul Woo;Sung, Gi-Ho;Agrawal, Ganesh Kumar;Rakwal, Randeep;Jo, Ick Hyun;Bang, Kyong Hwan;Kim, Young-Chang;Kim, Kee-Hong;Kim, Sun Tae
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.826-832
    • /
    • 2015
  • This study describes the effects of activated charcoal on the removal of salts, detergents, and pigments from protein extracts of ginseng leaves and roots. Incubation of protein extracts with 5% (w/v) activated charcoal (100-400 mesh) for 30 min at 4℃ almost removed the salts and detergents including NP-40 as can be observed on SDS-PAGE. In addition, analysis of chlorophyll content showed significant depletion of chlorophyll (~33%) after activated charcoal treatment, suggesting potential effect of activated charcoal on removal of pigments too along with the salts and detergents. 2-DE analysis of activated charcoal treated protein samples showed better resolution of proteins, further indicating the efficacy of activated charcoal in clearing of protein samples. In case of root proteins, although not major differences were observed on SDS-PAGE, 2-DE gels showed better resolution of spots after charcoal treatment. In addition, both Hierarchical clustering (HCL) and Principle component analysis (PCA) clearly separated acetone sample from rest of the samples. Phenol and AC-phenol samples almost overlapped each other suggesting no major differences between these samples. Overall, these results showed that activated charcoal can be used in a simple manner to remove the salts, detergents and pigments from the protein extracts of various plant tissues.

Regulation of Tumor Neceosis Factor-${\alpha}$ Receptors and Signal Transduction Pathways

  • Han, Hyung-Mee
    • Toxicological Research
    • /
    • v.8 no.2
    • /
    • pp.343-357
    • /
    • 1992
  • Tumor necrosis factor-${\alpha}$(TNF), a polypeptide hormone secreted primarily by activated macrophages, was originally identified on the basis of its ability to cause hemorrhagic necrosis and tumor regression in vivo. Subsequently, TNF has been shown to be an important component of the host responses to infection and cancer and may mediate the wasting syndrome known as cachexia. These systemic actions of TNF are reflected in its diverse effects on target cells in vitro. TNF initiates its diverse cellular actions by binding to specific cell surface receptors. Although TNF receptors have been identified on most of animal cells, regulation of these receptors and the mechanisms which transduce TNF receptor binding into cellular responses are not well understood. Therefore, in the present study, the mechanisms how TNF receptors are being regulated and how TNF receptor binding is being transduced into cellular responses were investigated in rat liver plasma membranes (PM) and ME-180 human cervical carcinoma cell lines. $^{125}I$-TNF bound to high ($K_d=1.51{\pm}0.35nM$)affinity receptors in rat liver PM. Solubilization of PM with 1% Triton X-100 increased both high affinity (from $0.33{\pm}0.04\;to\;1.67{\pm}0.05$ pmoles/mg protein) and low affinity (from $1.92{\pm}0.16\;to\;7.57{\pm}0.50$ pmoles/mg protein) TNF binding without affecting the affinities for TNF, suggesting the presence of a large latent pool of TNF receptors. Affinity labeling of receptors whether from PM or solubilized PM resulted in cross-linking of $^{125}I$-TNF into $M_r$ 130 kDa, 90 kDa and 66kDa complexes. Thus, the properties of the latent TNF receptors were similar to those initially accessible to TNF. To determine if exposure of latent receptors is regulated by TNF, $^{125}I$-TNF binding to control and TNF-pretreated membranes were assayed. Specific binding was increased by pretreatment with TNF (P<0.05), demonstrating that hepatic PM contains latent TNF receptors whose exposure is promoted by TNF. Homologous up-regulation of TNF receptors may, in part, be responsible for sustained hepatic responsiveness during chronic exposure to TNF. As a next step, the post-receptor events induced by TNF were examined. Although the signal transduction pathways for TNF have not been delineated clearly, the actions of many other hormones are mediated by the reversible phosphorylation of specific enzymes or target proteins. The present study demonstrated that TNF induces phosphorylation of 28 kDa protein (p28). Two dimensional soidum dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) resolved the 28kDa phosphoprotein into two isoforms having pIs of 6.2 and 6.1. The pIs and relative molecular weight of p28 were consistent with those of a previously characterized mRNA cap binding protein. mRNA cap binding proteins are a class of translation initiation factors that recognize the 7-methylguanosine cap structure found on the 5' end of eukaryotic mRNAs. In vitro, these proteins are defined by their specific elution from affinity columns composed of 7-methylguanosine 5'-triphosphate($m^7$GTP)-Sepharose. Affinity purification of mRNA cap binding proteins from control and TNF treated ME-180 cells proved that TNF rapidly stimulates phosphorylation of an mRNA cap binding protein. Phosphorylation occurred in several cell types that are important in vitro models of TNF action. The mRNA cap binding protein phosphorylated in response to TNF treatment was purifice, sequenced, and identified as the proto-oncogene product eukaryotic initiation factor-4E(eIF-4E). These data show that phosphorylation of a key component of the cellular translational machinery is a common early event in the diverse cellular actions of TNF.

  • PDF

Germination and Proteome Profile Characteristics of Wheat Seeds Treated under Different Concentrations of Abscisic Acid (Abscisic acid 농도에 따른 밀 종자의 발아와 단백질체의 발현 특성)

  • Jeong, Jae-Hyeok;Kim, Dae-Wook;Hwang, Woon-Ha;An, Sung-Hyun;Jeong, Han-Yong;Lee, Hyeon-Seok;Choi, In-Bea;Choi, Kyung-Jin;Yun, Jong-Tak;Yun, Song Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.1
    • /
    • pp.25-34
    • /
    • 2018
  • This study was conducted to investigate the germination and proteome profile characteristics of wheat seeds treated under various concentrations of abscisic acid (ABA). After-ripening, the seeds of three wheat cultivars (Baegjoong, Keumkang, and Uri) showing different levels of dormancy were used. Germination index and germination rate of the cultivars was higher than 0.95% and 98%, respectively, and these were not significantly different under 0, 10, 30, and $50{\mu}M$ ABA at 7 d after germination. However, the growth of the shoot and radicle was significantly inhibited at 10, 30, and $50{\mu}M$ ABA compared to that at $0{\mu}M$ ABA. Mean ABA content of the embryos of seeds germinated at 0 and $50{\mu}M$ ABA for 7 d was 0.8 and $269.0ngmg^{-1}DW$, respectively. Proteins extracted from embryos germinated for 4 d were analyzed by two-dimensional gel electrophoresis, and proteins showing a difference of 1.5-fold or greater in their spot volume relative to that of $0{\mu}M$ ABA were identified. The expression of four protein spots increased at $50{\mu}M$ ABA and two protein spots were detected only at $50{\mu}M$ ABA; these six proteins were all identified as globulin types. Conversely, the expression of three protein spots decreased at $50{\mu}M$ ABA and were identified as cytosolic glutamine sysnthetase, isocitrate dehydrogenase, and S-adenosylmethionine synthetase 2. In conclusion, ABA did not inhibit the germination rate regardless of pre-harvest sprouting characteristics of the cultivars. However, the growth of the shoot and radicle was significantly inhibited by ABA, most likely through the down regulation of glutamine, methyl group donor, and polyamines biosynthesis, among others, while accompanied by globulin accumulation in the embryos.