• Title/Summary/Keyword: 2-deoxy-D-glucose

Search Result 105, Processing Time 0.024 seconds

Effects of Pentoses on 2-deoxy-D-Glucose Transport of the Endogenous Sugar Transport Systems in Spodoptera frugiperda Clone 9 Cells

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • Insect cells such as Spodoptera frugiperda Clone 9 (Sf9) cells are widely chosen as the host for heterologous expression of a mammalian sugar transport protein using the baculovirus expression system. Characterization of the expressed protein is expected to include assay of its function, including its ability to transport sugars and to bind inhibitory ligands such as cytochalasin B. It is therefore very important first to establish the transport characteristics and other properties of the endogenous sugar transport proteins of the host insect cells. However, very little is known of the transport characteristics of Sf9 cells, although their ability to grow on TC-100 medium strongly suggested the presence of endogenous glucose transport system. In order to investigate the substrate and inhibitor recognition properties of the Sf9 cell transporter, the ability of pentoses to inhibit 2-deoxy-D-glucose (2dGlc) transport was investigated by measuring inhibition constants $(K_i)$. To determine the time period over which of sugar into the Sf cells was linear, the uptake of 2dGlc 0.1mM extracellular concentration was measured over periods ranging from 30 seconds to 30 minutes. The uptake was linear for at least 2 minutes at the concentration, implying that uptake made over a 1 minute time course would reflect initial rates of the sugar uptake. The data have also revealed the existence of a saturable transport system for pentose uptake by the insect cells. The transport was inhibited by D-xylose and D-ribose, although not as effective as hexoses. However, L-xylose had a little effect on 2dGlc transport in the Sf9 cells, indicating that the transport is stereoselective. Unlike the human erythrocyte-type glucose transport system, D-ribose had a somewhat greater apparent affinity for the Sf9 cell transporter than D-xylose. It is therefore concluded that Sf9 cells contain an endogenous sugar transport activity that in some aspects resembled the human erythrocyte-type counterpart, although the Sf9 and human transport systems do differ in their affinity for cytochalasin B.

  • PDF

Effects of 2-deoxy-D-glucose and quercetin on the gene expression of bone sialoprotein and osteocalcin during the differentiation in irradiated MC3T3-E1 osteoblastic cells (2-deoxy-D-glucose와 quercetin이 방사선조사 MC3T3-E1 골모세포주의 분화시 bone sialoprotein과 osteocalcin 유전자의 발현에 미치는 영향)

  • Lee, Ji-Un;Kim, Kyoung-A;Koh, Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.39 no.3
    • /
    • pp.121-132
    • /
    • 2009
  • Purpose : To investigate the effects of 2-deoxy-D-glucose (2-DG) and quercetin (QCT) on gene expression of bone sialoprotein (BSP) and osteocalcin (OC) during the differentiation in irradiated MC3T3-E1 osteoblastic cells. Materials and Methods : When MC3T3-E1 osteoblastic cells had reached 70-80% confluence, cultures were transferred to a differentiating medium supplemented with 5 mM 2-DG or $10{\mu}M$ QCT, and then irradiated with 2, 4, 6, and 8 Gy. At various times after irradiation, the cells were analyzed for the synthesis of type I collagen, and expression of BSP and OC. Results : The synthesis of type I collagen in cells exposed to 2 Gy of radiation in the presence of 2-DG or QCT showed no significant difference compared with the control group within 15 days post-irradiation. When the cells were irradiated with 8 Gy, 2-DG facilitated the irradiation mediated decrease of type I collagen synthesis, whereas such decrease was inhibited by treating with QCT. During MC3T3-E1 osteoblastic cell differentiation, the mRNA expression of BSP and OC showed the peak value at 14 days and 21 days, respectively. 2-DG or QCT treatment alone decreased the level of BSP mRNA, but increased the OC mRNA level only at early time of differentiation (day 7). In the cells irradiated with 2, 4, 8 Gy, the mRNA expression of BSP and OC decreased at 7 days after the irradiation. The cells were treated with various dose of radiation in the presence of 2-DG or QCT, the mRNA level of both BSP and OC increased although this increase was observed at low dose of radiation (2 Gy) and at the early stage of differentiation. However, when the cells were exposed to 4, 6, or 8 Gy, the increase of BSP and OC mRNAs was detected only in cells co-incubated with QCT. Conclusion : This study demonstrates that 2-DG and QCT affect differently the expression of bone formation related factors, type I collagen, BSP, and OC in the irradiated MC3T3-E1 osteoblasic cells, according to the dose of radiation and the times of differentiation. Overall, the present findings suggest that 2-DG and QCT could have the regulatory roles as radiation-sensitizer and -protector, respectively.

  • PDF

Effects of 2-deoxy-D-glucose and quercetin on osteoblastic differentiation and mineralization in irradiated MC3T3-E1 cells (2-deoxy-D-glucose와 quercetin이 방사선조사 MC3T3-E1 골모세포주의 분화와 석회화에 미치는 영향)

  • Ahn, Hyoun-Suk;Kim, Kyoung-A;Koh, Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.36 no.4
    • /
    • pp.189-198
    • /
    • 2006
  • Purpose: To investigate the in vitro response of MC3T3-E1 osteoblastic cells to X-ray in the presence and absence of 2 deoxy-D-glucose (2-DG) and quercetin (QCT). Materials and Methods: The MC3T3-E1 cells were cultured in an ${\alpha}-MEM$ supplemented with 5 mM 2-DG or $10{\mu}M$ QCT and then the cells were incubated for 12 h prior to irradiation with 2, 4, 6, and 8Gy using a linear accelerator (Mevaprimus, Germany) delivered at a rate of 1.5 Gy/min. At various times after the irradiation, the cells were processed for the analyses of proliferation, viability, cytotoxicity, and mineralization. Results: Exposure of the cells to X-ray inhibited the tritium incorporation, 3-(4, 5-dimethylthiazol-2yl-)-2, 5-diphenyl tetrazolium bromide (MTT)-reducing activity, and alkaline phosphatase (ALP) activity, and caused cytotoxicity and apoptosis in a dose-dependent manner of the X-ray. This effect was further apparent on day 3 and 7 after the irradiation. RA+2-DG showed the decrease of DNA content, cell viability, and increase of cytotoxicity rather than RA. ALP activity increased on day 7 and subsequently its activity dropped to a lower level. 2-DG suppressed the calcium concentration, but visual difference of number of calcified nodules between RA and RA+2-DG was not noticed. RA+QCT showed the increase of DNA content, cell viability, but decrease of cytotoxicity and subG1 stage cells in the cell cycle, and increased calcified nodules in von Kossa staining rather than the RA. ALP activity showed significant increases on day 7 and subsequently its activity dropped to a lower level. Conclusion: The results showed that the 2-DG acted as a radiosensitizing agent and QCT acted as a radiosensitizing agent respectively in the irradiated MC3T3-E1 osteoblast-like cells.

  • PDF

Isolation of Intestinal Glucose Uptake Inhibitor from Punica granatum L.

  • Kim, Hye-Kyung;Baek, Soon-Sun;Cho, Hong-Yon
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.135-141
    • /
    • 2011
  • Inhibition of intestinal glucose uptake is beneficial in reducing the blood glucose level for diabetes. To search for an effective intestinal glucose uptake inhibitor from natural sources, 70 native edible plants, fruits and vegetables were screened using Caco-2 cells and fluorescent D-glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG). A compound that was able to inhibit glucose uptake was isolated from methanol extract of Punica granatum L. and called PG-1a. PG-1a appears to be a phthalic acid-diisononyl ester- like compound (PDE) with molecular weight of 418. The inhibitory effect of PG-1a on intestinal glucose uptake was dose-dependent with 89% inhibition at $100\;{\mu}g$/mL. Furthermore, the intestinal glucose uptake inhibitory effect of PG-1a was 1.2-fold higher than phlorizin, a well known glucose uptake inhibitor. This study suggests that PG-1a could play a role in controlling the dietary glucose absorption, and that PG-1a can effectively improve the diabetic condition, and may be used as an optional therapeutic and preventive agent.

Pyruvate Protection against Endothelial Cytotoxicity Induced by Blockade of Glucose Uptake

  • Chung, Se-Jin;Lee, Se-Hee;Lee, Yong-Jin;Park, Hyoung-Sook;Bunger, Rolf;Kang, Young-Hee
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • We have previously demonstrated that the redox reactant pyruvate prevents apoptosis in the oxidant model of bovine pulmonary artery endothelial cells (BPAEC), and that the anti-apoptotic mechanism of pyruvate is mediated in part via the mitochondrial matrix compartment. However, cytosolic mechanisms for the cytoprotective feature of pyruvate remain to be elucidated. This study investigated the pyruvate protection against endothelial cytotoxicity when the glycolysis inhibitor 2-deoxy-D-glucose (2DG) was applied to BPAEC. Millimolar 2DG blocked the cellular glucose uptake in a concentration- and time-dependent manner with >85% inhibition at $\geq$5 mM within 24 h. The addition of 2DG evoked BPAEC cytotoxicity with a substantial increase in lipid peroxidation and a marked decrease in intracellular total glutathione. Exogenous pyruvate partially prevented the 2DG-induced cell damage with increasing viability of BPAEC by 25-30%, and the total glutathione was also modestly increased. In contrast, 10 mM L-lactate, as a cytosolic reductant, had no effect on the cytotoxicity and lipid peroxidation that are evoked by 2DG. These results suggest that 2DG toxicity may be a consequence of the diminished potential of glutathione antioxidant, which was partially restored by exogenous pyruvate but not L-lactate. Therefore, pyruvate qualifies as a cytoprotective agent for strategies that attenuate the metabolic dysfunction of the endothelium, and cellular glucose oxidation is required for the functioning of the cytosolic glutathione/NADPH redox system.

Isolation of Protoplasts from Rhizopus nigricans (Rhizopus nigricans로부터 원형질체의 분리)

  • Kim, Myung-Hee;Kim, Mal-Nam
    • The Korean Journal of Mycology
    • /
    • v.22 no.2
    • /
    • pp.138-144
    • /
    • 1994
  • Conditions for isolation of protoplasts from spores and mycelia of Rhizopus nigricans were studied. Larger amount of protoplasts was obtained from swollen spores in liquid medium contained with 5% of 2-deoxy-D-glucose for 4 hours than from mycelia. Enzyme mixture of Novozym 234(2%) and ${\beta}-glucuronidase(5000\;unit/ml)$ was most effective for the isolation of protoplasts from swollen spores and from mycelia. The solution of 0.6 M $MgSO_4$ or mannitol and pH 6.0 showed good results as the osmotic stabilizer and the optimal condition of pH of the enzyme solution for the isolation of protoplast from the swollen spores, respectively. At this condition, $8.0{\times}10^6\;cells/ml$ of protoplasts was obtained from swollen spores by digestion with lytic enzyme mixture for 2 hours.

  • PDF

Effect of 2-NBDG, a Fluorescent Derivative of Glucose, on Microbial Cell Growth

  • Shin, Dong-Sun;Oh, Ki-Bong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.834-837
    • /
    • 2002
  • A fluorescent glucose analogue,2-[N-(7-nitrobenz-2-ox a-1,3-diazol-4-yl) amino] -2- deoxy-D-glucose (2-NBDG), which had previously been developed for the analysis of glucose uptake in living cells, was investigated to determine its biological activity on microorganisms.2-NBDG did not show any inhibitory effect on growth of yeast cells and bacteria. In contrast, 2-NBDG exhibited strong inhibitory effects on filamentous fungal growth. The growth of filamentous fungi was completely inhibited, when 2-NBDG was supplemented as sole carbon source. The inhibitory effect was decreased by the addition of glucose in the test medium. Furthermore, 2-NBDC inhibited chitinase activity of Trichoderma sp. These results suggested that the inhibitory effects of 2-NBDG on filamentous fungi might be partially due to the inhibition of chitinase.

Function of Lysine-148 in dTDP-D-Glucose 4,6-Dehydratase from Streptomyces antibioticus Tu99

  • Sohng, Jae-Kyung;Noh, Hyung-Rae;Lee, Oh-Hyoung;Kim, Sung-Jun;Han, Ji-Man;Nam, Seung-Kwan;Yoo, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.217-221
    • /
    • 2002
  • dTDP-D-glucose 4,6-dehydratase (TDPDH) catalyzes the conversion of dTDP-D-glucose to dTDP-4-keto-6-deoxy-D-glucose, and requires $NAD^+$ as a coenzyme for its catalytic activity. The dTDP-D-glucose 4,6-dehydratase from Streptomyces antibioticus $Tu{\ddot}99$ tightly binds $NAD^+$ [19]. In order to determine the role of lysine-148 in the $NAD^+$ binding, the lysine of the dTDP-D-glucose 4,6-dehydratase from Streptomyces antibioticus $Tu{\ddot}99$ was mutated to various amino acids by site-directed mutagenesis. The catalytic activity of the four mutated enzymes of TDPDH did not recover after addition of $NAD^+$ . However, the activity of K159A, the mutated enzyme of UDP-D-glucose 4-epimerase (UDPE), recovered after the addition of $NAD^+$ [15]. Although dTDP-glucose 4,6-dehydratase, and UDP-galactose (glucose) 4-epimerase are members of the short-chain dehydrogenase/reductase SDR family and the lysine-148 of TDPDH was highly conserved as in UDPE (Lys-159), the function of the lysine-148 of TDPDH was different from that of UDPE. The mutated enzymes showed that the lysine-148 of the dTDP-D-glucose 4,6-dehydratase played no role in the $NAD^+$ binding. Accordingly, it is suggested that the lysine-148 of the dTDP-D-glucose 4,6-dehydratase is involved in the folding of TDPDH.

FDG PET/CT Assessment of the Biological Behavior of Meningiomas

  • Park, Yong-Sook;Jeon, Byung-Chan;Oh, Hyung-Suk;Lee, Seok-Mo;Chun, Bong-Kwon;Chang, Hee-Kyung
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.6
    • /
    • pp.428-433
    • /
    • 2006
  • Objective : We investigated the pattern of glucose uptake in meningiomas using $^{18}F$-fluoro-2-deoxy-D-glucose[FDG] PET/CT. It was hypothesized that the degree of glucose uptake in each tumor could predict the histologic grade. Methods : In 19 patients with meningiomas, the Ki-67 proliferative index, standardized uptake values[SUV] of FDG uptake, tumor to contralateral gray matter ratio[TGR] of SUV, tumor size, edema grade, vascular endothelial growth factor[VEGF] expression, histopathologic grade and the blood supply pattern were assessed. Results : Of the 19 meningiomas, 8 were meningothelial, 1 fibrous, 2 transitional, 1 psammomatous, 2 angiomatous, and 5 atypical. The tumor proliferative index of Ki-67, tumor size, and peritumoral edema were larger in the histopathologic grade-2 meninigiomas than in the grade-1 meningioma group. There were no significant differences in SUV and TGR between two groups. Tumor size and peritumoral edema were significantly larger in VEGF-positive tumors than in negative tumors. Conventional angiography was performed in 12 patients. Dural supply was noted predominantly in 2 patients. Four patients had mainly pial cortical supply patterns. In tumors with more pial supply, VEGF was more frequently positive. There was a significant relation between SUV and Ki-67 and between SUV and peritumoral edema. Conclusion : We found FOG uptake in meningiomas is associated with proliferative potential, however, no clear limits of SUV and TGR can be set to distinguish between grade-1 and grade-2 meningiomas, which makes the assessment of malignancy grade using PET scan metabolic imaging difficult in individual cases.