• Title/Summary/Keyword: 2-cell embryo

Search Result 938, Processing Time 0.033 seconds

Chk2 Regulates Cell Cycle Progression during Mouse Oocyte Maturation and Early Embryo Development

  • Dai, Xiao-Xin;Duan, Xing;Liu, Hong-Lin;Cui, Xiang-Shun;Kim, Nam-Hyung;Sun, Shao-Chen
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.126-132
    • /
    • 2014
  • As a tumor suppressor homologue during mitosis, Chk2 is involved in replication checkpoints, DNA repair, and cell cycle arrest, although its functions during mouse oocyte meiosis and early embryo development remain uncertain. We investigated the functions of Chk2 during mouse oocyte maturation and early embryo development. Chk2 exhibited a dynamic localization pattern; Chk2 expression was restricted to germinal vesicles at the germinal vesicle (GV) stage, was associated with centromeres at pro-metaphase I (Pro-MI), and localized to spindle poles at metaphase I (MI). Disrupting Chk2 activity resulted in cell cycle progression defects. First, inhibitor-treated oocytes were arrested at the GV stage and failed to undergo germinal vesicle breakdown (GVBD); this could be rescued after Chk2 inhibition release. Second, Chk2 inhibition after oocyte GVBD caused MI arrest. Third, the first cleavage of early embryo development was disrupted by Chk2 inhibition. Additionally, in inhibitor-treated oocytes, checkpoint protein Bub3 expression was consistently localized at centromeres at the MI stage, which indicated that the spindle assembly checkpoint (SAC) was activated. Moreover, disrupting Chk2 activity in oocytes caused severe chromosome misalignments and spindle disruption. In inhibitor-treated oocytes, centrosome protein ${\gamma}$-tubulin and Polo-like kinase 1 (Plk1) were dissociated from spindle poles. These results indicated that Chk2 regulated cell cycle progression and spindle assembly during mouse oocyte maturation and early embryo development.

Effect of Mature Human Follicular Fluid on the Development of Mouse Embryos in vitro (성숙난포액을 이용한 생쥐배아의 발달에 관한 연구)

  • Park, S.Y.;Lee, J.J.;Kim, S.H.;Ku, P.S.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.19 no.2
    • /
    • pp.125-131
    • /
    • 1992
  • The possible effect of human follicular fluid(hFF) on the growth and development of fertilized oocytes and embryos is important because the fallopian tubes are exposed to FF after follicular rupture and the processes of fertilization and embryo cleavage occur inside the fallopian tubes. Previously, it was suggested that human FF might adversely affect on the development of early mouse embryos. In order to investigate the effect of hFF on the development of embryos, early mouse embryos were cultured in media containing various protein sources as bovine serum albumin(BSA), fetal cord serum(FCS) and FF. And we evaluated the development of early mouse embryos in terms of the morphology, cleavage rate, and cell count of blastcysts. There were no significant differences in the morula and blstocyst formation rates of 2-cell mouse embryos cultured in the media containg three different protein sources and three different concentrations of FF. The blastocyst formation rate of 1-cell mouse embryo cultured in FF group was significantly higher than that cultured in BSA group(P<0.05). The morula and blastocyst formation rates of 2-cell mouse embryos of the group cultured in the media containing FF were comparable with those of other two groups, in addition, the cell count of blastocysts of FF group in the 2-cell embryo culture was higher than those of BSA group and HCS group(P<0.01), and this finding was also noted in 1-cell embryo culture. There was no difference in the morula and blastocyst formation rates of the 2-cell mouse embryos cultured in the media containing different concentrations of FF. These results suggest that mature human follicular fluid has no inhibitory activity on the development of early mouse embryos even in high concentration and may be a good protein source which is positively associated with the development of mouse embryos in vitro especially in 1 cell embryo culture.

  • PDF

Mechanism for the Action of Co-culture (공배양의 작용기전에 관한 연구)

  • Kim, Mi-Kyoung;Joo, Bo-Sun;Kim, Mi-Sun;Moon, Hwa-Sook;Lee, Kyu-Sup;Kim, Han-Do
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.1
    • /
    • pp.39-46
    • /
    • 2000
  • Objective: A number of studies to improve in vitro culture conditions have been tried over past ten years by using co-culture system with helper somatic cells. However, the mechanism of coculture is poorly understood. This study was designed to understand the mechanism for the mode of actual action of co-culture using co-culture system of ICR strain's 1-cell embryos with human oviduct epithelial cells by examining the effect of conditioned medium and contactless coculture using a cell culture insert on the embryo development and by measuring the level of superoxide anion from conditioned medium after co-culture. Methods: ICR strain's zygote embryos were cultured in medium alone (control), coculture, conditioned medium, or contactless coculture system for 6 days. Conditioned media (CM) were prepared as following 5 groups. All CM were collected after culturing oviduct cells for 2 days. CM-1 was stored at $-20^{\circ}C$ until use, and CM-2 was prepared just before use as a culture medium. CM-3 was cocultured with embryos and retrieved just before use. CM-4 and CM-5 were derives from the microfilteration of CM-2 and CM-3, respectively, using Microcon-10 (10 kDa molecular weight cut-off). The percentage of the embryos developed to hatched blastocyst stage and the level of superoxide anion in supernatant from medium alone culture (control), coculture, and contactless coculture were measured. Results: The rates of embryo development to the hatched blastocyst stage were significantly higher in coculture (43%) than in control (0%) (p<0.05). The CM-1 group had no embryo development since 2-cell embryonic stage, whereas the CM-2, CM-3, CM-4 and CM-5 groups had the improved development to 4 or 8 cell embryo stage, but the similar rate of development to hatched blastocyst compared to control. The effect of coculture on embryo development was disappeared in the contactless coculture group. The level of superoxide anion was significantly reduced in coculture group compared to control. Conclusion: It is concluded that the present coculture system overcomes the 2-cell block in vitro and improves the embryo development. This beneficial effect may be due to the direct cell-cell contact between embryo and helper cells or the removal of deleterious components from medium rather than the embryotrophic factors.

  • PDF

Developmental characterization of embryo size mutant in rice (Oryza sativa L.)

  • Hong, Soon-Kwan
    • Plant Resources
    • /
    • v.5 no.2
    • /
    • pp.141-154
    • /
    • 2002
  • In this experiment, three kinds of mutations(ge, re, and eml )relating to the size of embryos were used to study their generation, genetic mechanism and developmental characteristics, and the interactions between embryo and endosperm were also examined. Giant embryo mutation comprises 7 kinds including the already isolated ge, and ge-2, which share an identical gene site. The SAM and the size of radicule for the ge showed little difference compared to a normal type. The number of embryo cells did not increased as much as it would affect the size of embryo. Therefore, the enlargement of embryo was due to the enlargement of scutellum that originated from the corpulence of each cell. Both F$_1$' s of re ]and odm 49 formed reduce embryos, and other combinations of hybridization showed all wild type of embryo sizes. Accordingly, the odm 49 must have an identical gene site of re 1, while odm 48 and odm 62 have different gene sites. Their shoots and radicules also shrank by the same ratio, however no sign of physical change was noticed. The size of embryo cell showed no change, while the number of cells was the half of that of wild types. The three gene sites of re represent all of them control the size of the entire embryo forming organs. The eml 1 was defined to have temperature sensibilities that the generation of endosperms was active at a high temperature while that was hampered at a low temperature.

  • PDF

Effect of Exogenous Fatty Acids on in vitro Development of Rat Embryos

  • Yahia Khandoker, M.A.M.;Tsujii, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.2
    • /
    • pp.169-173
    • /
    • 1999
  • Studies were made to evaluate the specific and combined effects of different fatty acids on the in vitro development of 8-cell rat embryo in culture media with and without carbohydrate substrate. Palmitic, oleic, linoleic and arachidonic acids were added singly and in combination to media which contained fatty acid-free BSA. Cell numbers in blastocysts cultured in the media were counted and compared with cell numbers in blastocysts at the corresponding stage collected from the uterus. Oleic, linoleic and arachidonic acids promoted the rat embryo development from 8-cell to the blastocysts. especially in the absence of carbohydrate substrates. Among these three, oleic acid was the most effective but embryo development was not accelerated by the addition of palmitic acid in either the presence or the absence of carbohydrate substrates. Addition of the mixture of four fatty acids was more effective for rat embryo development than single treatment with any of fatty acids tested. Cell numbers per blastocyst in the presence and absence of carbohydrate substrate were similar, and did not differ from those for blastocysts obtained from the uterus.

Effects of pregnancy serum and scriptaid on development in early partheno embryo

  • Oh, Min-Gee;Jung, Na-Hyeon;Kim, Dae-Seung;Yoon, Jong-Taek
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.163-170
    • /
    • 2020
  • Partheno Embryo's research is known to play a very important role in identifying the development of embryonic cells or analyzing the genetic mechanisms of embryonic development, but the information on apoptosis formed during the early stage of development on Partheno Embryo is very little. Therefore, this study analyzed whether the embryonic cell death of unit embryos can be inhibited by adding Scriptaid, one of HDACi, which plays a role in demethylation of histone proteins as a method of regulating the cell cycle in the early embryo development of Partheno Embryo. As a result, the differentiation rate was higher in the group that added Scriptaid and FBS, but the cellular development was higher in the group that added pregnant serum to Scriptaid. As a result of analyzing the expression of the gene through IF and PCR, the group with the addition of gestational serum increased the expression of BCL2 and PCNA, which affects the anti-Casp3 action in cell survival. In addition, it is interpreted that treatment of Scriptaid for 16 hours, rather than 24 h treatment lowers the expression of Casp-3, a representative factor of apoptosis, and also increases embryonic development, thus affecting early embryo development. Therefore, it is concluded that the 16-hour treatment of Scriptaid and the use of gestational serum will inhibit cell death in the early embryonic development and increase the development rate of the embryo.

Development of New Vitrification Method for Preimplantation Mouse Embryo

  • Ha, A-Na;Fakruzzaman, Md.;Lee, Kyeong-Lim;Wang, Erdan;Lee, Jae-Ik;Min, Chan-Sik;Kong, Il-Keun
    • Journal of Embryo Transfer
    • /
    • v.28 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • The purpose of this study was attempted to new methods in mammalian embryos vitrification. This method was affected to increase of the embryo vitrification efficiency and it would be applied to the field of embryo transfer to recipient by modified loading method of embryo into 0.25 ml plastic straw. The frozen mouse embryos were carried out warmed from two different cell stages (8-cell and blastocyst, respectively) by attachment of an embryo in the vitrification straw (aV) method. All groups were cultured in M-16 medium to determine the development and survivability for 24 h, respectively. Results shown that, the survivability of two different groups were significantly different (94.8% vs. 70.9%). Total cell number was not significantly different the non-frozen blastocyst ($99.7{\pm}12.4$) compared to the post-thaw blastocyst ($94.8{\pm}15.1$). From the 8-cell embryo, total cell number of frozen blastocysts were significantly lower than others groups ($74.7{\pm}14.6$, p<0.05). In the case of cell death analysis, the blastocysts from non-frozen and frozen-thawed 8-cell group were not different ($0.0{\pm}0.0$ vs. $1.9{\pm}3.1$, p>0.05). However, the apoptotic nuclei of blastocyst were significantly observed the frozen-thawed group ($5.4{\pm}4.4$) compared to non-frozen group (p<0.05). Therefore, this new method of embryos using in-straw dilution and direct transfer into other species would be more simple procedure of embryo transfer rather than step-wise dilution method and cryopreservation vessels, so we can be applied in animal as well as human embryo cryopreservation in further.

Dysfunctional pancreatic cells differentiated from induced pluripotent stem cells with mitochondrial DNA mutations

  • So, Seongjun;Lee, Song;Lee, Yeonmi;Han, Jongsuk;Kang, Soonsuk;Choi, Jiwan;Kim, Bitnara;Kim, Deokhoon;Yoo, Hyun-Ju;Shim, In-Kyong;Oh, Ju-Yun;Lee, Yu-Na;Kim, Song-Cheol;Kang, Eunju
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.453-458
    • /
    • 2022
  • Diabetes mellitus (DM) is a serious disease in which blood sugar levels rise abnormally because of failed insulin production or decreased insulin sensitivity. Although many studies are being conducted for the treatment or early diagnosis of DM, it is not fully understood how mitochondrial genome (mtDNA) abnormalities appear in patients with DM. Here, we induced iPSCs from fibroblasts, PBMCs, or pancreatic cells of three patients with type 2 DM (T2D) and three patients with non-diabetes counterpart. The mtDNA mutations were detected randomly without any tendency among tissues or patients. In T2D patients, 62% (21/34) of iPSC clones harbored multiple mtDNA mutations, of which 37% were homoplasmy at the 100% mutation level compared to only 8% in non-diabetes. We next selected iPSC clones that were a wild type or carried mutations and differentiated into pancreatic cells. Oxygen consumption rates were significantly lower in cells carrying mutant mtDNA. Additionally, the mutant cells exhibited decreased production of insulin and reduced secretion of insulin in response to glucose. Overall, the results suggest that screening mtDNA mutations in iPSCs from patients with T2D is an essential step before pancreatic cell differentiation for disease modeling or autologous cell therapy.