• Title/Summary/Keyword: 2-axis Gimbal-type Antenna

Search Result 7, Processing Time 0.017 seconds

Structural Analysis of Spaceborne Two-axis Gimbal-type Antenna of Compact Advanced Satellite (차세대 중형위성용 2축 짐벌식 안테나의 구조해석)

  • Park, Yeon-Hyeok;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2018
  • A two-axis gimbal-type antenna for a Compact Advanced Satellite (CAS) is used to efficiently transmit high resolution image data to a ground station. In this study, we designed the structure of a two-axis gimbal-type antenna while applying a launch lock device to secure its structural safety under a launch environment. To validate the effectiveness of the structural design, a structural analysis of the antenna was performed. First, a modal analysis was performed to investigate the dynamic responses of the antenna with and without the mechanical constraints of the launch lock device. In addition, a quasi-static analysis was performed to confirm the structural safety of the antenna structure and bolt I/Fs between the antenna base and the satellite. The suitable range of constraint force on the launch lock device was also determined to ensure the structural safety and mechanical gapping of the ball & socket interfaces, which places multi-constraints on the azimuth and elevation stage of the antenna.

Thermal Design and Analysis for Two-Axis Gimbal-Type X-Band Antenna of Compact Advanced Satellite (차세대 중형위성용 2축 짐벌식 X-밴드 안테나의 열설계 및 궤도 열해석)

  • Chae, Bong-Geon;You, Chang-Mok;Chang, Su-Young;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.306-314
    • /
    • 2018
  • A two-axis gimbal-type X-band antenna for CAS(Compact Advanced Satellite) transmits large amount of image data to ground station regardless of satellite attitude and orbital motion. This antenna mounted on the external surface of the satellite is directly exposed to the extreme space with thermal environment during the orbital operation. Therefore, a proper thermal design is needed to maintain the antenna itself as well as other main components within allowable temperature range. In this study, the thermal design effectiveness of two-axis gimbal X-band antenna was verified through the thermal analysis. In addition, required power and duty cycle of heater were estimated through the thermal analysis under conditions of system level thermal vacuum test and on-orbit thermal environment. The thermal analysis results indicated that all the main components of X-band antenna satisfy the allowable temperature requirement.

Characteristics Analysis of a Pseudoelastic SMA Mesh Washer Gear for Jitter Attenuation of Stepper-actuated Gimbal-type Antennas (스텝모터 구동형 짐벌 안테나의 미소진동저감을 위한 초탄성 형상기억합금 메쉬 와셔 기어의 기본특성 분석)

  • Park, Yeon-Hyeok;You, Chang-Mok;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.46-58
    • /
    • 2018
  • A two-axis gimbal-type X-band antenna is widely used to transmit bulk image data from high-resolution observation satellites. However, undesirable microvibrations induced by driving the antenna should be attenuated, because they are a main cause of image-quality degradation of the observation satellite. In this study, a pseudoelastic memory alloy (SMA) gear was proposed to attenuate the microvibrations by driving the antenna in an azimuth angle. In addition, the proposed gear can overcome the limitations of the conventional titanium blade gear, which is not still enough and is vulnerable to plastic deformations under excessive torque. To investigate the basic characteristics of the proposed SMA mesh washer gear, a static load test was performed on the thickness of the SMA mesh washer and the rotation of the gear. Moreover, The microvibration measurement test demonstrated that the SMA mesh washer gear proposed in this study is effective for microvibration attenuation.

Characteristics Measurement of Hyperelastic SMA Gear for Micro-jitter Attenuation of X-band Antenna of Compact Advanced Satellite (차세대중형위성 적용가능성 검토를 위한 X-band 안테나의 미소진동 저감용 초탄성 SMA 기어의 특성 측정)

  • Jeon, Young-Hyeon;Back, Hyeon-Gyu;Song, Da-Il;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.784-793
    • /
    • 2017
  • A two-axis gimbal-type X-band antenna mounted on an observation satellite can efficiently transmit high-capacity image data to a ground station regardless of both the satellite position and the orbital motion. However, this X-band antenna induces unnecessary micro-jitter which can degrade the image quality of the high-resolution observation satellite. Therefore, to achieve the high-resolution image quality from the observation satellite, micro-jitters have been required to be isolated. In this study, to resolve aforementioned drawback, we proposed blade gear using a shape memory alloy (SMA) applied to azimuth stage of X-band antenna. To investigate the rotational basic characteristics of the proposed SMA blade gear, we performed rotational static loading test. Futhermore, to evaluate the cycle to failure of the gear, accelerated life test was conducted. The temperature test was conducted to confirm rotational basic characteristics at various temperature conditions. To verify the isolation performance for micro-jitter, we performed micro-jitter measurement test.

Investigation of Micro-vibration Isolation Performance of SMA Mesh Washer Isolator for Vibration Isolation of X-band Antenna (SMA 메쉬 와셔 진동 절연기를 적용한 X-band 안테나의 미소진동 절연성능 검토)

  • Jeon, Su-Hyeon;Kwon, Sung-Choel;Kim, Dae-Kwan;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.988-995
    • /
    • 2014
  • Two axis gimbal type X-band antenna system has been widely used to effectively transmit the real time image data from the observation satellite to the ground station. The micro-vibration generated by stepping motor actuation and imperfect intermeshed gear configuration of the antenna is one of the sources to degrade the image quality. To guarantee a high quality image of high resolution observation satellite, micro-vibration isolation of X-band antenna is required. In this paper, the X-band antenna vibration isolation system using pseudoelastic SMA(Shape Memory Alloy) mesh washer has been newly suggested. The basic characteristics of the SMA mesh washer isolator proposed in this study has been measured through static load tests and its effectiveness has been demonstrated by the micro-vibration isolation test of the X-band antenna.

Micro-vibration Isolation Performance of X-band Antenna Using Blade Gear (블레이드 기어를 적용한 2축 짐발 구동 안테나의 미소진동 절연성능)

  • Jeon, Su-Hyeon;Kwon, Seong-Cheol;Kim, Tae-Hong;Kim, Yong-Hoon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.313-320
    • /
    • 2015
  • A 2-axis gimbal-type X-band antenna has been widely used to effectively transmit the high resolution image data from the observation satellite to the desired ground station. However, a discontinuous stepper motor activation for rotating the pointing mechanism in azimuth and elevation directions induces undesirable micro-vibration disturbances which can result in the image quality degradation of a high-resolution observation satellite. To enhance the image quality of the observation satellite, attenuating the micro-vibration induced by an activation of the stepper motor for rotational movements of the antenna is important task. In this study, we proposed a low-rotational-stiffness blade gear applied to the output shaft of the stepper motor to obtain the micro-vibration isolation performance. The design of the blade gear was performed through the structure analysis such that this gear is satisfied with the margin of safety rule under the derived torque budget. In addition, the micro-vibration isolation performance of the blade gear was verified through the micro-vibration measurement test using the dedicated micro-vibration measurement device proposed in this study.

Thermal Design of Electronic for Controlling X-band Antenna of Compact Advanced Satellite (차세대 중형위성 탑재 X-밴드 안테나 구동용 전자유닛 APD 열설계 및 열해석)

  • Kim, Hye-In;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.57-67
    • /
    • 2018
  • The APD (Antenna Pointing Driver) is an electronic equipment tool that is used to drive the two-axis gimbal-type antenna for the image data transmission of CAS (Compact Advanced Satellite). In this study, a heat dissipation of EEE (Electrical, Electronic and Electromechanical) is reviewed, to identify the parts that directly affected its efficiency, lifetime as well as the reliability of the structure. This event eventually incurs a failure of the EEE part itself, or even the entire satellite system as noted in experiments in this case. To guarantee reliability of electronic equipment during the mission, the junction temperature of EEE parts is considered a significant and important design factor, and subsequently must be secured within the allowable range. Therefore, the notation of the thermal analysis considering the derating is indispensable, and a proper thermal mathematical model should be constructed for this case. In this study, the thermal design and thermal analysis are performed to confirm the temperature requirement of the APD. In addition, we noted that the validity of the thermal model, according to each of the identified modeling methods, was therefore compared through the thermal analysis utilized in this case.