• Title/Summary/Keyword: 2-S emissions

Search Result 752, Processing Time 0.033 seconds

Effect of Limestone Fineness on Physical Properties and Environmental Impact of Cement (석회석의 분말도가 시멘트의 물리적 특성 및 환경에 미치는 영향)

  • In-Gyu Kang;Jin-Man Kim;Sang-Chul Shin;Geon-Woo Kim;Tae-Yun An
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.82-93
    • /
    • 2024
  • Since the cement industry generates more than 60 % of CO2 during the clinker production process, supplementary cementitious materials are used worldwide to reduce CO2 efficiently. Mainly used supplementary cementitious materials such as blast furnace slag and fly ash, which are used in various industries including the cement industry, concrete admixtures, and ground solidification materials. However, since their availability is expected to decrease in the future according to the carbon neutrality strategy of each industry, new supplementary cementitious materials should be used to achieve the cement industry's goal for increasing the additive content of Portland cement. Limestone is a material that already has a large amount in the cement industry and has the advantage of high grinding efficiency, so overseas developed countries established Portland limestone cement standards and succeeded in commercialization. This study was an experimental study conducted to evaluate the possibility of utilizing domestic PLC, the effect of fineness and replacement ratio on the physical properties of cement was investigated, and the environmental impact of cement was evaluated by analyzing CO2 emissions.

Implications for Japan's National REDD+ Strategies - Focused on Joint Credit Mechanism (JCM) - (일본 REDD+의 국가 전략 및 시사점 - 양국간 크레딧 메커니즘(JCM)을 중심으로 -)

  • Park, Jeongmook;Seo, Hwanseok;Lee, Jungsoo
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.2
    • /
    • pp.238-246
    • /
    • 2016
  • The study aims to examine Japan's National REDD+ Strategies prepared for Post-2020 and the status of its implementation by organizations in Japan, and then to suggest the potential REDD+ countermeasures against Joint Credit Mechanism (JCM) for Republic of Korea and their implications. As for the technical limitations of the guidelines of REDD+ under the JCM, it is pointed out that forests located at the place with less potential safeguard intervention tend to be selected as the target area for a project and that, as reference emission trend changes depending on the basic year of the baseline, differences could occur among the amounts of greenhouse gas emission. In addition, it is pointed out that the result of the calculation of the displacement of emissions, or leakeage, in REDD+, can have an uncertainty, since the calculation is done by just multiplying leakage area by certain coefficients, without considering the size of the leakage area. Furthermore, the lack of implementation guideline or methodologies for a project level is also pointed out as a limitation, considering that there are only some national and sub-national monitoring guidelines at present. Finally, internationally accepted guidelines for safeguard and its sub-items needed to be prepared, as current safeguard policy only includes lists without detailed items. Such things mentioned above are all related to, and can lead to the problem of double counting of items in Nested Approach etc., as well as of the distribution of credits. Therefore, Republic of Korea should take these into consideration when implementing its REDD+ projects.

Effect of Highly Pressurized Hydrogen Gas on Tensile Properties of a Low-Alloy Steel Used for Manufacturing CNG Storage Vessels (CNG 저장용기용 저합금강의 인장 특성에 미치는 고압 수소가스의 영향)

  • Lee, H.M.;Jeong, I.H.;Park, J.S.;Nahm, S.H.;Han, J.O.;Lee, Y.C.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.829-833
    • /
    • 2012
  • SNG (synthetic natural gas or substitute natural gas) could contribute greatly toward energy security. In addition, HCNG (or $H_2CNG$) is expected to be used as a fuel gas for internal combustion engines and home appliances because it has extremely low emissions and high thermal efficiency. However, the hydrogen contained in SNG or HCNG can deteriorate the mechanical properties of the materials used in existing natural gas infrastructure. Therefore, it is necessary to investigate the effect of hydrogen on the mechanical properties of such materials so that SNG or HCNG can be transported and distributed safely and reliably. In this study, the effect of highly pressurized hydrogen gas on the tensile properties of a low-alloy steel used for manufacturing CNG storage vessels was investigated using the so-called hollow tensile specimen technique.

A Study on the Demonstration of Yellow Plume Elimination System from Combined Cycle Power Plant Using Liquid Injection System (액상 직분사 시스템을 이용한 복합화력 황연제거 실증 연구)

  • Lee, Seung-Jae;Kim, Younghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.317-324
    • /
    • 2020
  • Combined cycle power plants (CCPP) that use natural gas as fuel are easier to start and stop, and have lower pollutant emissions, so their share of domestic power generation facilities is steadily increasing. However, CCPP have a high concentration of nitrogen dioxide (NO2) emission in the initial start-up and low-load operation region, which causes yellow plume and civil complaints. As a control technology, the yellow plume reduction system was developed and operated from the mid-2000s. However, this technology was unable to control the phenomenon due to insufficient preheating of the vaporization system for 10 to 20 minutes of the initial start-up. In this study, CFD analysis and demonstration tests were performed to derive a control technology by injecting a reducing agent directly into the gas turbine exhaust duct. CFD analysis was performed by classifying into 5 cases according to the exhaust gas condition. The RMS values of all cases were less than 15%, showing a good mixing. Based on this, the installation and testing of the demonstration facilities facilitated complete control of the yellow plume phenomenon in the initial start-up.

Assessment of Water and Pollutant Mass Balance by Soil Amendment on Infiltration Trench (침투도랑 토양치환의 물순환 및 비점오염물질저감 효과 평가)

  • Jeon, Minsu;Choi, Hyeseon;Kang, Heeman;Kim, Lee-hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2020
  • Highways are characterized by high non-point pollutant emissions due to high traffic volumes and sections that cause abrupt change in driving speed (i.e. rest stations, ticketing office, etc.). Most highways in Korea were constructed with layers that do not allow adequate infiltration. Moreover, non-point pollution reduction facilities were not commonly installed on domestic highways. This study was conducted to evaluate a facility treating highway runoff and develop a cost-effective design for infiltration facilities by using soil amendment techniques. Performing soil amendment increased the hydraulic retention time (HRT) and infiltration rate in the facility by approximately 30% and 20%, respectively. The facility's efficiency of removing non-point pollutants (Total Suspend Soiled (TSS), Chemical Oxygen Demand(COD), Biological Oxygen Demand(BOD), Total Nitrogen (TN) and Total Phosphorus, (TP) were also increased by 20%. Performing soil amendment on areas with low permeability can increase the infiltration rates by improving the storage volume capacity, HRT, and infiltration area. The application of infiltration facilities on areas with low permeability should comply with the guidelines presented in the Ministry of Environment's Standards for installation of non-point pollution reduction facilities. However, soil amendment may be necessary if the soil infiltration rate is less than 13 mm/hr.

Driving Methology for Smart Transportation under Longitudinal and Curved Section of Freeway (스마트교통시대의 종단 및 횡단 복합도로선형 구간에서의 가감속 시나리오별 최적주행 방법론)

  • Yoon, Jin su;Bae, Sang hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.73-82
    • /
    • 2017
  • As of December 2016, the number of registered automobiles in Korea exceeds 21million. As a result, greenhouse gas emission by transportation sector are increasing every year. It was concluded that the development of the driving strategy considering the driving behavior and the road conditions, which are known to affect the fuel efficiency and the greenhouse gas emissions, could be the most effective fuel economy improvement. Therefore, this study aims to develop a fuel efficient driving strategy in a complex linear section with uphill and curved sections. The road topography was designed according to 'Rules about the Road Structure & Facilities Standards'. Various scenarios were selected. After generating the speed profile, it was applied to the Comprehensive Modal Emission Model and fuel consumption was calculated. The scenarios with the lowest fuel consumption were selected. After that, the fuel consumption of the manual driver's driving record and the selected optimal driving strategy were compared and analyzed for verification. As a result of the analysis, the developed optimal driving strategy reduces fuel consumption by 21.2% on average compared to driving by manual drivers.

Effect of organic medicinal charcoal supplementation in finishing pig diets

  • Kim, Kwang Sik;Kim, Yeung-Hwa;Park, Jun-Ceol;Yun, Won;Jang, Keum-Il;Yoo, Do-Il;Lee, Dong-Hoon;Kim, Beom-Gyu;Cho, Jin-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.1
    • /
    • pp.50-59
    • /
    • 2017
  • This study was performed to evaluate the effect of organic medicinal charcoal as a feed additive on aflatoxin absorption, odor emission, fecal microflora and in vitro digestibility in pig diet. A 10-day trial was conducted with 20 [(Yorkshire ${\times}$ Landrace) ${\times}$ Duroc] finishing pigs ($BW=81{\pm}3.3kg$) to investigate the population of Lactobacillus and E. coli in feces and fecal odor ($NH_3$, $H_2S$, total mercaptans, and Acetic acid) in vivo. The in vitro and in vivo treatments included: control (basal diet; CON); (basal diet + 0.25% Organic Medicinal Charcoal; OMC); (basal diet + 0.50% Pyroligneous Charcoal; PC); and (basal diet + 0.50% Coconut tree Charcoal; CC). The aflatoxin absorption capacity was 100, 10, and 20% in OMC, PC, and CC, respectively. The digestibility of dry matter in OMC was significantly higher than that of CON, PC, or CC in vitro (p < 0.05). The digestibility of organic matter in OMC was found to be significantly different from that of CON (p < 0.05). Fecal ammonia and $H_2S$ emissions of OMC were observed to be significantly lower than those of CON, PC, and CC (p < 0.05). Lactobacillus counts in feces of OMC and CC were significantly higher than those of CON and PC (p < 0.05). Fecal E. coli counts of OMC and CC were lower than those of CON and PC (p < 0.05). It was concluded that organic medicinal charcoal can be used as a feed additive in pig diets because it improves the digestibility of feed and fecal odor, and has positive effects on the population of microorganism in feces.

A Study on the Industrial Competitiveness of Ballast Water Management System in Compliance with the International Maritime Organization Ballast Water Management Convention in Korea (우리나라 선박평형수처리시스템(BWMS) 산업의 경쟁력 분석에 관한 연구)

  • Park, Han-Seon;Kim, Bo-Ram;Lee, Jeong-Seok;Chung, Haeng-Un
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.483-492
    • /
    • 2020
  • In this study, we compared and analyzed the Revealed Comparative Advantage (RCA) and Trade Specialization Index (TSI) based on ballast water management systems (BWMS) trade data, which are related to the International Maritime Organization (IMO) Ballast Water Management Convention to suggest the current status of Korea's industrial competitiveness and suggest future development directions for the BWMS industry. As international interest in eco-friendly vessels is expanding, the IMO is engaged in dramatic discussions and agreement-making related to marine emissions of pollutants from ships. IMO member states that must implement this convention are striving to develop technology and secure industrial competitiveness as major industries in the eco-friendly shipping sector, with the BWMS industry experiencing a high market entry barrier and the possibility of the leading market entrants gaining leadership. The Republic of Korea accounts for 17 (approximately 38 %) of the 45 BWMS that received final approval as of October 2019. Based on trade data relating to product codes HS842219, HS84212, and HS89, the RCA index and TSI were calculated and compared. The findings revealed that the Republic of Korea has relative inferiority compared to countries such as Germany and Denmark. Despite this, Korea's favorable industrial environment, which includes several IMO-approved BWMS technologies and the possession of domestic certification institutions, is likely to strengthen its competitiveness in the BWMS market.

Lead Pollution and Lead Poisoning among Children in China

  • Zheng, Yuxin
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.24-25
    • /
    • 2003
  • Lead is ubiquitous in the human environment as a result of industrialization. China's rapid industrialization and traffic growth have increased the potential for lead emissions. Lead poisoning in children is one of the most common public health problems today, and it is entirely preventable. Children are more vulnerable to lead pollution and lead in their bodies can affect their nervous, circulatory, and digestive systems. Children are exposed to lead from different sources (such as paint, gasoline, and solder) and through different pathways (such as air, food, water, dust, and soil). Although all children are exposed to some lead from food, air, dust, and soil, some children are exposed to high dose sources of lead. Significant sources of lead for China's children include industrial emissions (often close to housing and schools), leaded gasoline, and occupational exposure that occurs when parents wear lead-contaminated clothing home from work, burning of coal for home heat and cooking, contaminated food, and some traditional medicines. To assess the blood lead level in children in China, a large-scale study was conducted in 19 cities among 9 provinces during 1997 to 2000. There were 6502 children, aged 3-5 years, were recruited in the study The result indicates that the mean blood lead level was 8.83ug/dl 3-5 year old living in city area. The mean blood lead level of boys was higher than that of girls (9.1l ug/dl vs 8.73ug/dl). Almost 30 percent childrens blood lead level exceeded 10ug/dl. The average blood lead level was higher than that of in 1985 (8.83ug/dl vs 8.lug/dl). An epidemiological study was carried on the children living around the cottage industries recycling the lead from battery. Nine hundreds fifty nine children, aged 5-12 years, living in lead polluted villages where the lead smelters located near the residential area and 207 control children live in unpolluted area were recruited in the study. The lead levels in air, soil, drinking water and crops were measured. The blood lead and ZnPP level were tested for all subjects. The results show that the local environment was polluted. The lead levels both in the air and crops were much higher than that of in control area. In the polluted area, the average blood level was 49.6ug/dl (rang 19.5-89.3ug/dl). Whereas, in the unpolluted area, the average blood level was 12.4ug/dl (rang 4.6-24.8ug/dl). This study indicates that in some countryside area, some cottage industries induce seriously lead pollution and cause children health problem. For the introducing of unleaded gasoline in some large cities, such as Beijing and Shanghai, the blood lead level showed a declined trend since 1997. By 2000, the use of leaded gasoline in motor vehicles has been prohibited in China. The most recent data available show that levels of lead in blood among children in Shanghai decreased from 8.3ug/dl in 1997 to 7.6ug/dl in 1999. The prevalence rate of children lead poisoning (blood lead >10ug/dl) was also decreased from 37.8% to 24.8%. In children living in downtown area, the blood lead level reduced dramatically. To explore the relationship between gene polymorphisms and individual susceptibility of lead poisoning, a molecular epidemiological study was conducted among children living in lead polluted environment. The result showed that the subjects with ALAD2 allele has higher ZPP level, and the subjects with VDR B allele has larger head circumference than only with b allele. In the present study, we demonstrated that ALAD genotypes modify lead effects on heme metabolism and VDR gene variants influence the skull development in highly exposed children. The polymorphism of ALAD and VDR genes might be the molecular inherited factor modifying the susceptibility of lead poisoning. Recently, Chinese government pays more attention to lead pollution and lead poisoning in children problem. The leaded gasoline was prohibited used in motor vehicles since 2000. The government has decided to have a clampdown on the high-polluted lead smelters for recycling the lead from battery in countryside. It is hopeful that the risk of lead poisoning in children will be decreased in the further

  • PDF

Spatial-temporal Assessment and Mapping of the Air Quality and Noise Pollution in a Sub-area Local Environment inside the Center of a Latin American Megacity: Universidad Nacional de Colombia - Bogotá Campus

  • Fredy Alejandro, Guevara Luna;Marco Andres, Guevara Luna;Nestor Yezid, Rojas Roa
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.232-243
    • /
    • 2018
  • The construction, development and maintenance of an economically, environmentally and socially sustainable campus involves the integration of measuring tools and technical information that invites and encourages the community to know the actual state to generate positive actions for reducing the negative impacts over the local environment. At the Universidad Nacional de Colombia - Campus $Bogot{\acute{a}}$, a public area with daily traffic of more than 25000 people, the Environmental Management Bureau has committed with the monitoring of the noise pollution and air quality, as support to the campaigns aiming to reduce the pollutant emissions associated to the student's activities and campus operation. The target of this study is based in the implementation of mobile air quality and sonometry monitoring equipment, the mapping of the actual air quality and noise pollution inside the university campus as a novel methodology for a sub-area inside a megacity. This results and mapping are proposed as planning tool for the institution administrative sections. A mobile Kunak$^{(R)}$ Air & OPC air monitoring station with the capability to measure particulate matter $PM_{10}$, $PM_{2.5}$, Ozone ($O_3$), Sulfur Oxide ($SO_2$), Carbon Monoxide (CO) and Nitrogen Oxide ($NO_2$) as well as Temperature, Relative Humidity and Latitude and Longitude coordinates for the data georeferenciation; and a sonometer Cirrus$^{(R)}$ 162B Class 2 were used to perform the measurements. The measurements took place in conditions of academic activity and without it, with the aim of identify the impacts generated by the campus operation. Using the free code geographical information software QGIS$^{(R)}$ 2.18, the maps of each variable measured were developed, and the impacts generated by the operation of the campus were identified qualitative and quantitively. For the measured variables, an increase of around 21% for the $L_{Aeq}$ noise level and around 80% to 90% for air pollution were detected during the operation period.