• Title/Summary/Keyword: 2-Phase Descent

Search Result 20, Processing Time 0.029 seconds

Kinematical Analysis of Endo 360° El-grip in Horizontal Bar (철봉 엔도 360°엘그립 동작의 기술분석)

  • Back, Jin-Ho;Park, Jong-Chul;Yoon, Jong-Wan;Lee, Yong-Sik;Park, Jong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.65-74
    • /
    • 2006
  • This study was attempted to Kinematical characteristics of the Endo $360^{\circ}$El-grip Swing on the horizontal bar. To do this, we selected and analyzed the performance of two athletes who did Endo $360^{\circ}$El-grip Swing in the horizontal bar competition of male artistic gymnastic in the 22nd Universiad Games 2003 Daegu. We drew the conclusions from the kinematical factors that were came out through analyzing three-dimensional cinematography of the athletes' movements, by using two video cameras. In point of analyzing the actual competition situation, it is expected that gymnastics and coaches have the effective informations, and the following conclusion had resulted. 1. When performing Endo $360^{\circ}$El-Grip, the average for entire required time was $1.93{\pm}0.06sec$. The average for descent phase time was $0.24{\pm}0.02sec$, ascent phase time was 0.22${\pm}0.07sec$, connecting phase time was $0.87{\pm}0.07sec$, and El-Grip phase time was $0.61{\pm}0.02sec$. The descent phase need short period of time but however to have a stable performance, ensuring ascent and connecting phase time are needed. El-Grip phase need short period of time to have a stable re-grasp. 2. To have a convenient preparation for El-Grip in descent and ascent phase, lowering CM, and ease up in sway and plunge from the High Bar would make descent and ascent even more faster and would have increase effect in trunk rotation. 3. In descent and ascent phase, if shoulder angle and arm slope is dwindling then it would effect rotation angle so might risk it from hitting a Bar when putting legs in and out. 4. In connecting phase, it requires some time to show stable performance when El-Grip phase is continued by using hip angle which would make trunk rotation angle bigger and make descent and ascent time slower. 5. In El-Grip phase, when doing motions like hand standing. using hip angle more than maximum would make CM even faster and it is stable position while performing.

Dynamic Modeling and Design of Controller based on Thrusters for Korean Lunar Module (달 착륙선의 동역학 모델링 및 추력기 기반 제어기 설계)

  • Yang, Sung-Wook;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper deals with dynamic modeling and controller design of a future Korean lunar module planned to be launched 2020's in Korea. For dynamic modeling of the lunar module, we first assume the lunar module as a rigid body. And we derive equations of motion for the lunar module by considering allocation of main thrusters and reaction thrusters. With the equation of motion, we design the controller based on the quaternion. A Pulse Width Pulse Frequency modulator(PWPFM) is selected for generating on/off signal. Finally, we construct a 2-phase descent mode including initial guidance mode, terminal guidance mode. The MATLAB simulation is performed for evaluating the descent ability and final landing velocity. The dynamic modeling and descent simulation of the lunar module in this paper could be applied for developing the future work of the Korean lunar exploration program.

The 3-D Motion Analysis of Kinematic Variety on Lower Extremities During Ramp Descent at Different Inclinations (정상인의 내림 경사로 보행 시 경사각에 따른 하지 관절의 삼차원적 동작 분석)

  • Han, Jin-Tae;Kim, Sik-Hyun;Bae, Sung-Soo
    • Physical Therapy Korea
    • /
    • v.13 no.2
    • /
    • pp.16-25
    • /
    • 2006
  • The aim of this study was to investigate the kinematics of young adults during descent ramp climbing at different inclinations. Twenty-three subjects descended four steps at four different inclinations (level, $-8^{\circ}$, $-16^{\circ}$, $-24^{\circ}$). The 3-D kinematics were measured by a camera-based Falcon System. The data were analyzed using one-way ANOVA and the Student-Newman-Keuls test. The kinematics of descent ramp walking could be clearly distinguished from the kinematics of level walking. On a sagittal plane, the ankle joint was more plantar flexed at initial contact with $-16^{\circ}/-24^{\circ}$ inclination, was decreased in the toe off position with all inclinations (p<.001),and was decreased at maximum plantar flexion during the swing phase (p<.001). The knee joint was more flexed at initial contact with the $-24^{\circ}$ inclination (p<.001), was more flexed in the toe off position with all inclinations (p<.001), and was more flexed at minimum flexion during stance phase and at maximum flexion during swing phase with $-16^{\circ}$, $-24^{\circ}$ inclination (p<.001). The hip joint was more flexed in the toe off position with $-16^{\circ}$, $-24^{\circ}$ inclination and was deceased at maximum extension during stance phase with $-16^{\circ}$, $-24^{\circ}$ inclination (p<.05). In the frontal plane, the ankle joint was more everted at maximum eversion during stance phase with $-16^{\circ}/-24^{\circ}$ inclination (p<.01) and was decreased at maximum inversion during swing phase with $-16^{\circ}$, $-24^{\circ}$ inclination (p<.01). The knee joint was more increased at maximum varus during stance phase with $-16^{\circ}/-24^{\circ}$ inclination (p<.001). The hip joint was deceased at maximum adduction during stance phase with $-24^{\circ}$ inclination (p<.05). In a horizontal plane, only the knee joint was increased at maximum internal rotation during stance phase with $-24^{\circ}$ inclination (p<.05). In descent ramp walking, the different gait patterns occurred at an inclination of over $16^{\circ}$ on the descending ramp in the sagittal and frontal planes. These results suggest that there is a certain inclination angle or angular range where subjects do switch between level walking and descent ramp walking gait patterns.

  • PDF

A Study for Enhancing Efficiency of STAR and IAP for the Prospect of Aircraft Descent Performance and FMS Descent Guidance Information (항공기 강하 성능과 FMS 강하 정보에 기반한 표준계기도착절차와 계기접근절차의 운항 효율성 향상에 관한 연구)

  • Choongsub Lee;Hyeonjin Lee;Hojong Baik;Janghoon Park
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.1
    • /
    • pp.79-91
    • /
    • 2023
  • In response to the recent surge in aviation demand, major airports and aviation authorities continue to make efforts to formulate arrival and approach procedures that take into account efficient aircraft separation, noise and environmental issues of carbon (CO2) emissions. In order to ensure efficient traffic control and environmental issues, as a result, a new concept Trombone, Point Merge, etc. have been introduced and widely used in the domestic airspace. However, these new concept procedures which do not properly reflect the characteristics of the aircraft operation performance and the FMS vertical descent guidance hinder flight efficiency as well as bring in turn negative factors such as level-off flight and the use of drag device at the busiest phase of the flight descent operation, like the Continuous Descent Operation (CDO). Accordingly, throughout modification the current Standard Terminal Arrival Route (STAR) and Instrument Approach Procedure(IAP) that reflect the aircraft descent performance and the FMS guidance, the flight operation safety and efficiency is expected to be improved eventually. We herewith analyze and propose the way of improving flight efficiency in the arrival operation procedure by supplementary modification which consequently contribute to the aviation industry international competitiveness.

$^{131}I$-O-Iodohippurate Renogram in Epidemic Hemorrhagic Fever (유행성(流行性) 출혈열환자(出血熱患者)의 Radio Renogram)

  • Kim, Myung-Jae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.1 no.2
    • /
    • pp.75-84
    • /
    • 1967
  • $^{131}I$-labeled-O-iodohippurate renograms in 15 cases of epidemic hemorrhagic fever(E.H. fever)during oliguric, diuretic and convalescent phase were analysed quantitatively and qualitatively, namely by its configuration, Tmax T 1/2 and renal index of Hirakawa. The results were as following: 1) Changes on the renograms in E.H. fever showed simultaneous bilateral renal impairment. 2) The characteristic configurations of renogram in the oliguric phase were: (1) Moderately decreased absolute amplitude of initial spike. (2) Continous rising second slope. (3) No appearance of terminal descent. Those were mast likely to those of renograms in acute ureteral obstruction or acute dehydration state. 3) During the diuretic phase, the renogram showed the point of maximal amplitude, but the steepness of 2nd slope was markedly decreased. The appearance of terminal descents was observed with unusually high amplitude despite of the tremendously large amount of urinary output during this phase. 4) In convalescence, the renograms were essentially normal in configuration, but the renal index of Hirakawa was not recovered until this phase. 5) Renograms in E.H. fever showed the characteristic patterns in each phase of its clinical course. 6) $^{131}I$-OIH-Renogram might be an useful method for the evaluation of renal function in E.H. fever during its course.

  • PDF

Multibody simulation and descent control of a space lander

  • Pagani, A.;Azzara, R.;Augello, R.;Carrera, E.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.2
    • /
    • pp.91-113
    • /
    • 2020
  • This paper analyzes the terminal descent phase of a space lander on a surface of a celestial body. A multibody approach is adopted to build the physical model of the lander and the surface. In this work, a legged landing gear system is considered. Opportune modelling of the landing gear crashbox is implemented in order to accurately predict the kinetic energy. To ensure the stability of the lander while impacting the ground and to reduce the contact forces that arise in this maneuver, the multibody model makes use of a co-simulation with a dedicated control system. Two types of control systems are considered; one with only position variables and the other with position and velocity variables. The results demonstrate the good reliability of modern multibody technology to incorporate control algorithms to carry out stability analysis of ground impact of space landers. Moreover, from a comparison between the two control systems adopted, it is shown how the velocity control leads to lower contact forces and fuel consumption.

Predicting compressive strength of bended cement concrete with ANNs

  • Gazder, Uneb;Al-Amoudi, Omar Saeed Baghabara;Khan, Saad Muhammad Saad;Maslehuddin, Mohammad
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.627-634
    • /
    • 2017
  • Predicting the compressive strength of concrete is important to assess the load-carrying capacity of a structure. However, the use of blended cements to accrue the technical, economic and environmental benefits has increased the complexity of prediction models. Artificial Neural Networks (ANNs) have been used for predicting the compressive strength of ordinary Portland cement concrete, i.e., concrete produced without the addition of supplementary cementing materials. In this study, models to predict the compressive strength of blended cement concrete prepared with a natural pozzolan were developed using regression models and single- and 2-phase learning ANNs. Back-propagation (BP), Levenberg-Marquardt (LM) and Conjugate Gradient Descent (CGD) methods were used for training the ANNs. A 2-phase learning algorithm is proposed for the first time in this study for predictive modeling of the compressive strength of blended cement concrete. The output of these predictive models indicates that the use of a 2-phase learning algorithm will provide better results than the linear regression model or the traditional single-phase ANN models.

An experimental study on two-phase flow resistances and interfacial drag in packed porous beds

  • Li, Liangxing;Wang, Kailin;Zhang, Shuangbao;Lei, Xianliang
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.842-848
    • /
    • 2018
  • Motivated by reducing the uncertainties in quantification of debris bed coolability, this paper reports an experimental study on two-phase flow resistances and interfacial drag in packed porous beds. The experiments are performed on the DEBECO-LT (DEbris BEd COolability-Low Temperature) test facility which is constructed to investigate the adiabatic single and two phase flow in porous beds. The pressure drops are measured when air-water two phase flow passes through the porous beds packed with different size particles, and the effects of interfacial drag are studied especially. The results show that, for two phase flow through the beds packed with small size particles such as 1.5 mm and 2 mm spheres, the contribution of interfacial drag to the pressure drops is weak and ignorable, while the significant effects are conducted on the pressure drops of the beds with bigger size particles like 3 mm and 6 mm spheres, where the interfacial drag in beds with larger particles will result in a descent-ascent tendency in the pressure drop curves along with the fluid velocity, and the effect of interfacial drag should be considered in the debris coolability analysis models for beds with bigger size particles.

Genetic Algorithm with the Local Fine-Tuning Mechanism (유전자 알고리즘을 위한 지역적 미세 조정 메카니즘)

  • 임영희
    • Korean Journal of Cognitive Science
    • /
    • v.4 no.2
    • /
    • pp.181-200
    • /
    • 1994
  • In the learning phase of multilyer feedforword neural network,there are problems such that local minimum,learning praralysis and slow learning speed when backpropagation algorithm used.To overcome these problems, the genetic algorithm has been used as learing method in the multilayer feedforword neural network instead of backpropagation algorithm.However,because the genetic algorith, does not have any mechanism for fine-tuned local search used in backpropagation method,it takes more time that the genetic algorithm converges to a global optimal solution.In this paper,we suggest a new GA-BP method which provides a fine-tunes local search to the genetic algorithm.GA-BP method uses gradient descent method as one of genetic algorithm's operators such as mutation or crossover.To show the effciency of the developed method,we applied it to the 3-parity bit problem with analysis.

KMTNet Supernova Project : Pipeline and Alerting System Development

  • Lee, Jae-Joon;Moon, Dae-Sik;Kim, Sang Chul;Pak, Mina
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2015
  • The KMTNet Supernovae Project utilizes the large $2^{\circ}{\times}2^{\circ}$ field of view of the three KMTNet telescopes to search and monitor supernovae, especially early ones, and other optical transients. A key component of the project is to build a data pipeline with a descent latency and an early alerting system that can handle the large volume of the data in an efficient and a prompt way, while minimizing false alarms, which casts a significant challenge to the software development. Here we present the current status of their development. The pipeline utilizes a difference image analysis technique to discover candidate transient sources after making correction of image distortion. In the early phase of the program, final selection of transient sources from candidates will mainly rely on multi-filter, multi-epoch and multi-site screening as well as human inspection, and an interactive web-based system is being developed for this purpose. Eventually, machine learning algorithms, based on the training set collected in the early phase, will be used to select true transient sources from candidates.

  • PDF