• Title/Summary/Keyword: 2-Ethylhexyloxy

Search Result 32, Processing Time 0.052 seconds

나노튜브를 이용한 AC구동 OLED

  • Jeon, So-Yeon;Yu, Se-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.532-532
    • /
    • 2012
  • 탄소 나노튜브(carbon nanotube, CNT)를 사용하여 AC 구동 방식의 organic light emitting devices (OLED)를 만들었다. 이 소자는 ITO가 코팅된 유리 위에 유전체 층, 유기 발광층 그리고 맨 위의 금속 전극 층으로 총 3개의 층으로 구성되어있다. 유전물질로써는 cyanoethyl pullulan (CRS)를 N,N dimethylformamide (DMF) 용매에 녹여 ITO층 위에 코팅하였고, 유기발광 물질로 poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)를 chloroform (CF)에 녹여 유전체 층 위에 코팅하였다. CNT를 MEH-PPV와 섞어서 유기발광 혼합물을 만들고 난 후, 유전체층 위에 코팅하였다. 마지막으로 알류미늄 전극을 시료 위에 코팅하였다. 소자에서 사용한 MEH-PPV에 의해 나오는 붉은색 발광을 확인 한 결과, CNT를 사용한 OLED 소자가 CNT를 사용하지 않는 소자보다 brightness가 좋았고, 전류도 더 작게 흘렀다. CNT의 농도에 따라 brightness의 변화는 경향을 나타냈다. CNT에 의한 percolation 효과 때문에 이러한 OLED 시료의 성능 향상이 이루어졌음을 입증하는 실험결과를 발표에서 설명할 예정이다.

  • PDF

Synthesis and Luminescent Properties of Blue Light Emitting Polymers Containing a 4,4' or 3,3'-Linked Biphenyl Unit

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.317-321
    • /
    • 2012
  • Poly[4,4'(3,3')-biphenylenevinylene-alt-2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene], 4,4'(3,3')-PBPMEH-PPV, and poly[4,4'(3,3')-biphenylenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene], 4,4'(3,3')-PBPCAR-PPV, of varying effective conjugation lengths, were synthesized by the well-known Wittig condensation polymerization between the appropriate biphenyl diphosphonium salts and dialdehyde monomers such as carbazole or dialkoxyphenyl dialdehyde. The conjugation lengths of the polymers were controlled by biphenyl linkages (4,4' or 3,3'). The resulting polymers were highly soluble in common organic solvents and exhibited good thermal stability up to $300^{\circ}C$. The synthesized polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 314-400 nm and 430-507 nm, respectively. Carbazole and 3,3'-biphenyl containing 3,3'-PBPCAR-PPV showed a blue PL peak at 430 nm. A single-layer light-emitting diode was fabricated in a configuration of ITO/polymer/Al. Electroluminescence (EL) emission of 3,3'-PBPCAR-PPV was shown at 455 nm.

Synthesis and Characterization of Red Light-Emitting Random Copolymers

  • Lee, Yeong-Beom;Shim, Hong-Ku
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1418-1421
    • /
    • 2009
  • A series of new light-emitting random copolymers with fully conjugated structure was prepared, for the first time through the well-known Gilch polymerization between 1,4-bis(chloromethyl)-2-ethylhexyloxy-5-methoxybenzene and 2,5-bis(bromomethyl)thiophene monomers in different ratios. The synthesized polymers (on thin film) showed the maximum wavelength of UV-visible absorbance and photoluminescence (PL) near 500 nm and near 600 nm, respectively. A single-layer light-emitting diode device, which has a simple ITO (indium-tin oxide)/polymer/Al configuration, was fabricated by spin-coating of polymers and then vacuum evaporation of Al metal. The threshold bias of PMEHPVTVs was in the range of 3.5-10 V. As in the PL spectra, the maximum wavelength of light emission near 600 nm was also shown in electroluminescence (EL) spectra of PMEHPVTVs when the operating voltage was about 7 - 14 V.

  • PDF

Thermal Characteristics Analysis of Organic Electroluminescence Device using MEH-PPV (MEH-PPV를 이용한 유기전계발황소자의 열적 특성 분석)

  • 박재영;박승욱;신무환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.112-116
    • /
    • 2001
  • Organic Electroluminescence device, which have the single-layer structure of ITO(indium-tin-oxide)/MEH-PPV (Poly [2-(2'-ethylhexyloxy)-5-methoxy-1, 4-phenylenevinylene])/Al(aluminium) and ITO/MEH-PPV/Alq$_3$(tris-8-hydroxyquinolinato aluminium)/Al were fabricated and electrical properties were investigated. Experimental results, in single-layer structure, shown that alum on voltage is about 12 V, and current density increases as a function of increasing temperature. It was explained by thermionic emission. In double-layer structure, thickness 200 $\AA$ of Alq$_3$ is shown electrical properties that turn on voltage is about 11V, and current density decreases as a function of increasing temperature.

  • PDF

Design and Synthesis of New Fluorene-Based Blue Light Emitting Polymer Containing Electron Donating Alkoxy Groups and Electron Withdrawing Oxadiazole

  • Kim, Yun-Hi;Park, Sung-Jin;Park, Jong-Won;Kim, Jin-Hak;Kwon, Soon-Ki
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.216-220
    • /
    • 2007
  • A new polyfluorene-based copolymer having 2-ethylhexyloxy-5-methoxy-l,4-phenylene as an electron donating group and 2,5-diphenyl-oxadiazole as an electron withdrawing group was synthesized by the Suzuki coupling reaction. The obtained copolymer was characterized by $^1H-NMR,\;^{13}C-NMR$, and IR-spectroscopy. The weight average molecular weight ($M_w$) of the obtained polymer was 18,600 with a polydispersity index of 1.5. The maximum photoluminescence of the solution and film of the polymer was observed at 453 nm and 456 nm, respectively. A double-layer device with the configuration, ITO/PEDOT/copolymer/Al, emitted blue light at 460 nm.

Synthesis and Color Tuning of Poly(p-phenylenevinylene) Containing Terphenyl Units for Light Emitting Diodes

  • Jin, Young-Eup;Kim, Jin-Woo;Park, Sung-Heum;Kim, Hee-Joo;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1807-1818
    • /
    • 2005
  • New PPV based conjugated polymers, containing terphenyl units, were prepared as the electroluminescent (EL) layer in light-emitting diodes (LEDs). The prepared polymers, poly[2,5-bis(4-(2-etylhexyloxy)phenyl)-1,4-phenylenevinylene] (BEHP-PPV), poly[2-(2-ethylhexyloxy)-5-(4-(4-(2-etylhexyloxy)phenyl)phenyl)-1,4-phenylenevinylene] (EEPP-PPV) and poly[2-(2-ethylhexyloxy)-5-(9,9-bis(2-etylhexyl)fluorenyl)-1,4 phenylenevinylene] (EHF-PPV), were soluble in common organic solvents and used as the EL layer in double layer light-emitting diodes (LEDs) (ITO/PEDOT/polymer/Al). The polymers were prepared by the Gilch reaction. The number-average molecular weight $(M_n)$, weight-average molecular weight $(M_w)$, and the polydispersities (PDI) of these polymers were in the range of 9000-58000, 27000-231000, 2.9-3.9, respectively. These polymers have quite good thermal stability with decomposition starting above 320-350. The polymers show photoluminescence (PL) with maximum peaks at around 526-562 nm (exciting wavelength, 410 nm) and blue EL with maximum peaks at around $\lambda_{max}$ = 526-552 nm. The current-voltageluminance (I-V-L) characteristics of polymers show turn-on voltages of 5 V. Even though both of EEPP-PPV and BEHP-PPV have the same terphenyl group in the repeating unit, EEPP-PPV with directly substituted alkoxy group in the back bone has longer effective conjugation length than BEHP-PPV, and exhibits red shift in the PL spectra. Both of EEPP-PPV and EHF-PPV have ter-phenyl units and directly substituted alkoxy group in back bone. EHF-PPV with fluorenyl unit attached to the PPV backbone has shorter effective conjugation length than EEPP-PPV with biphenyl unit, and exhibits blue shift in the PL spectra.

Synthesis and Characterization of Poly(9,9-dioctylfluorene-2,7-vinylene) for Light Emitting Diode Application

  • Jin, Sung-Ho;Park, Hye-Jin;Kim, Jin-Young;Lee, Kwang-Hee;Gal, Yeong-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.336-339
    • /
    • 2002
  • Fluorenevinylene-based EL polymers, poly(9,9-dioctylfluorene-2,7-vinylene) (PFV) and poly[(9,9-dioctylfluorene-2,7-vinylene)-co-{2-methoxy-5-(2 ethylhexyloxy)-1,4-phenylenevinylene}] (PFV-co-MEH-PPV), have been synthesized by Gilch polymerization method. The resulting polymers were soluble in common organic solvents and easily spin cast onto the indium-tin oxide (ITO) substrate. The weight average molecular weight and polydispersity of PFV and PFV-co-MEH-PPV were in the range of 22.2 - 43.2 x $10^4$ and 1.9 - 3.0, respectively. Double-layer light-emitting diodes with ITO/PEDOT/Polymer/Al configuration were fabricated. PFV-co-MEH-PPV showed better EL properties than those of PFV and MEH-PPV The turn-on voltage of poly(9,9dialkylfluorene) derivatives were dramatically decreased to the 2.5 V compared to fluorene-based EL polymers. The maximum brightness and luminescence efficiency were up 7 to 1350 cd/$m^2$ and 0.51 Cd/A.

  • PDF

Theoretical and quantitative structural relationships of the electrochemical properties of Cis-unsaturated thiocrown ethers and n-type material bulk-heterojunction polymer solar cells as supramolecular complexes [X-UT-Y]@R (R = PCBM, p-EHO-PCBM, and p-EHO-PCBA)

  • Taherpour, Avat Arman;Biuki, Farzaneh
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.145-152
    • /
    • 2011
  • Since the discovery of fullerenes as a class of nanostructure compounds, many potential applications have been suggested for their unusual structures and properties. The isolated pentagon rule (IPR) states that all pentagonal carbon rings are isolated in the most stable fullerene. Fullerenes $C_n$ are a class of spherical carbon allotrope group with unique properties. Electron transfer between fullerenes and other molecules is thought to involve the transfer of electrons between the molecules surrounding the fullerene cage. One class of electron transfer molecules is the methanofullerene derivatives ([6,6]-phenyl $C_{61}$-butyric acid methyl ester (PCBM), 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid methyl ester (p-EHO-PCBM), and 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid (p-EHO-PCBA), 10-12). It has been determined that $C_{60}$ does not obey IPR. Supramolecular complexes 1-9 and 10-12 are shown to possess a previously unreported host.guest interaction for electron transfer processes. The unsaturated, cis-geometry, thiocrown ethers, (1-9) (described as [X-UT-Y], where X and Y indicate the numbers of carbon and sulfur atoms, respectively), are a group of crown ethers that display interesting physiochemical properties in the light of their conformational restriction compared with a corresponding saturated system, as well as the sizes of their cavities. Topological indices have been successfully used to construct mathematical methods that relate structural data to various chemical and physical properties. To establish a good relationship between the structures of 1-9 with 10-12, a new index is introduced, ${\mu}_{cs}$. This index is the ratio of the sum of the number of carbon atoms ($n_c$) and the number of sulfur atoms ($n_s$) to the product of these two numbers for 1-9. In this study, the relationships between this index and oxidation potential ($^{ox}E_1$) of 1-9, as well as the first to third free energies of electron transfer (${\Delta}G_{et(n)}$, for n = 1-3, which is given by the Rehm-Weller equation) between 1-9 and PCBM, p-EHO-PCBM, and p-EHO-PCBA (10-12) as [X-UT-Y]@R(where R is the adduct PCBM, p-EHO-PCBM, and p-EHO-PCBA group) (13-15) supramolecular complexes are presented and investigated.

The Influence of Surface-modified ITO by Ion Beam Irradation on the Organic EL Performances (이온빔으로 조사된 ITO 전극 표면이 유기 EL 소자성능에 미치는 영향)

  • Oh, Jae-young;Joo, Jin-soo;Lee, Chun-An;Park, Byung-Gook;Kim, Dong-hwan
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.191-194
    • /
    • 2003
  • The influence of on ion beam irradiation to the indium tin oxide (ITO) substrate on the performance of the organic light-emitting diodes (OLEDs) was studied. ITO films were used as the transparent anode of OLEDs with poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) as a hole-injection/transport layer. Oxygen and argon plasma treatment of ITO resulted in a change in the work function and the chemical composition. For plasma treated ITO anodes, the device efficiency clearly correlated with the value of the work function. We also discussed the implications of our experimental study in relation to the modification of the ITO surface composition, transmittance, reflectance, and water contact angle (WCA).

Impedance spectroscopy analysis of polymer light emitting diodes with the LiF buffer layer at the cathode/organic interface (LiF 음극 버퍼층을 사용한 폴리머의 효율 향상에 관한 임피던스 분석)

  • Kim, H.M.;Jang, K.S.;Yi, J.;Sohn, Sun-Young;Park, Kuen-Hee;Jung, Dong-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.277-278
    • /
    • 2005
  • Admittance Spectroscopic analysis was applied to study the effect of LiF buffer layer and to model the equivalent circuit for poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV)-based polymer light emitting diodes (PLEDs) with the LiF cathode buffer layer. The single layer device with ITO/MEH-PPV/Al structure can be modeled as a simple parallel combination of resistor and capacitor. Insertion of a LiF layer at the Al/MEH-PPV interface shifts the highest occupied molecular orbital level and the vacuum level of the MEH-PPV layer as a result the barrier height for electron injection at the Al/MEH-PPV interface is reduced. The admittance spectroscopy measurement of the devices with the LiF cathode buffer layer shows reduction in contact resistance ($R_c$), parallel resistance ($R_p$) and increment in parallel capacitance ($C_p$).

  • PDF