• Title/Summary/Keyword: 2-D shape

Search Result 2,492, Processing Time 0.028 seconds

Shape Adaptive Searching Technique for Finding Focused Pixels (초점화소 탐색시간의 최소화를 위한 검색영역 결정기법)

  • Choi, Dae-Sung;Song, Pil-Jae;Kim, Hyun-Tae;Hahn, Hern-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.151-159
    • /
    • 2002
  • The method of accumulating a sequence of focused images is usually used for reconstruction of 3D object\\`s shape. To acquire a focused image, the conventional methods must calculate the focus measures of all pixels resulting in a long measurement time. This paper proposes a new method of reducing the computation time spent for deciding the focused pixels in the input image, which predicts the area in the image to calculate the focus measure based on a priori information on the object to be measured. The proposed algorithm estimates the area to consider in the next measurement based on the focused area in the present measurement. As the focus measure, Laplacian measure was used in this paper and the experiments have shown that the preposed algorithm may significantly reduce the calculation time. Although, as implied, this algorithm can be applied to only simple objects at this stage, advanced representation schemes will eliminate the restrictions on application domain.

A Study on the Prediction of Mass and Length of Injection-molded Product Using Artificial Neural Network (인공신경망을 활용한 사출성형품의 질량과 치수 예측에 관한 연구)

  • Yang, Dong-Cheol;Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.1-7
    • /
    • 2020
  • This paper predicts the mass and the length of injection-molded products through the Artificial Neural Network (ANN) method. The ANN was implemented with 5 input parameters and 2 output parameters(mass, length). The input parameters, such as injection time, melt temperature, mold temperature, packing pressure and packing time were selected. 44 experiments that are based on the mixed sampling method were performed to generate training data for the ANN model. The generated training data were normalized to eliminate scale differences between factors to improve the prediction performance of the ANN model. A random search method was used to find the optimized hyper-parameter of the ANN model. After the ANN completed the training, the ANN model predicted the mass and the length of the injection-molded product. According to the result, average error of the ANN for mass was 0.3 %. In the case of length, the average deviation of ANN was 0.043 mm.

Frequency-Based Image Analysis of Random Patterns: an Alternative Way to Classical Stereocorrelation

  • Molimard, J.;Boyer, G.;Zahouani, H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.181-193
    • /
    • 2010
  • The paper presents an alternative way to classical stereocorrelation. First, 2D image processing of random patterns is described. Sub-pixel displacements are determined using phase analysis. Then distortion evaluation is presented. The distortion is identified without any assumption on the lens model because of the use of a grid technique approach. Last, shape measurement and shape variation is caught by fringe projection. Analysis is based on two pin-hole assumptions for the video-projector and the camera. Then, fringe projection is coupled to in-plane displacement to give rise to 3D measurement set-up. Metrological characterization shows a resolution comparable to classical (stereo) correlation technique ($1/100^{th}$ pixel). Spatial resolution seems to be an advantage of the method, because of the use of temporal phase stepping (shape measurement, 1 pixel) and windowed Fourier transform (in plane displacements measurement, 9 pixels). Two examples are given. First one is the study of skin properties; second one is a study on leather fabric. In both cases, results are convincing, and have been exploited to give mechanical interpretation.

Development of Creative Design and Construction Methods of Bridge Piers using 3D Model (3차원 모델 기반의 미적 교각 설계 및 시공 기술 개발)

  • Lee, Sang-Yong;Dong, Ngoc Son;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.5 no.2
    • /
    • pp.12-18
    • /
    • 2015
  • Bridge piers typically have circular or rectangular shapes without decorative design. Prefabrication for accelerated construction has been widely adopted in bridge structures. Cost for steel formwork is a main restriction of creative irregular shapes. 3D modelling techniques allow creative design of columns and 3D printing provides possibility to minimize the fabrication cost. In this paper, 3D design process of bridge piers was suggested by converting 2D picture into 3D decorative shape. Formwork design using 3D printed panels was also proposed and mock-up tests were conducted. Precast columns need accurate geometry control from fabrication to assembly. Laser scanning and geometry control devices were adopted. Through the digitalized process of design, fabrication and assembly, creative design of structures can be realized in reasonable cost range.

Design and Implementation of the Perception Mechanism for the Agent in the Virtual World (가상 세계 거주자의 지각 메커니즘 설계 및 구현)

  • Park, Jae-Woo;Jung, Geun-Jae;Park, Jong-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.8
    • /
    • pp.1-13
    • /
    • 2011
  • In order to create an intelligent autonomous agent in virtual world, we need a sophisticated design for perception, recognition, judgement and behavior. We develop the perception and recognition functions for such an autonomous agent. Our perception mechanism identifies lines based on differences in color, the primitive visible data, and exploits those lines to grasp shapes and regions in the scene. We develop an inferencing algorithm that can infer the original shape from a damaged or partially hidden shape using its characteristics from the ontology in order to intelligently recognize the perceived shape. Several individually recognized 2D shapes and their spatial relations form 3D shapes and those 3D shapes in turn constitute a scene. Each 3D shape occupies its respective region, and an agent analyzes the associated objects and relevant scenes to recognize things and phenomena. We also develop a mechanism by which an agent uses this recognition function to accumulate and use her knowledge on the scene in the historical context. We implement these functions presented above against an example situation to demonstrate their sophistication and realism.

A study for calculating factor of safety against basal heave during circular vertical shaft excavation in clay considering 3D shape (3차원 형상을 고려한 점성토 지반 원형 수직구 굴착 중 히빙에 대한 안전율 산정을 위한 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun;Kim, Jung-Tae;Kim, Han-Sung;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.717-729
    • /
    • 2018
  • Considering the stability of the ground in the process of excavation design is essential because there is a risk of basal heave due to the load of the surrounding ground during the vertical excavation. However, calculation of the factor of safety for basal heave should be performed with two-dimensional equation, and the equation cannot reflect three-dimensional shape of vertical excavation. In this study, an equation for factor of safety for the basal heave was proposed with considering the effect of three-dimensional shape. It is confirmed that the equation can more appropriately reflect the basal heave stability 3D circular vertical excavation than the existing equation. Using the equation proposed in this study, it is possible to derive an appropriate factor of safety according to the 3D excavation shape during the circular vertical shaft excavation.

A study on carbon composite fabrication using injection/compression molding and insert-over molding (사출/압축 공정과 인서트 오버몰딩을 이용한 탄소복합소재 성형에 대한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-hwan;Hong, Seok-Kwan;Lee, Sang-Yong;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2020
  • In this study, forming of carbon composite parts was performed using an injection/compression molding process. An impregnation of matrix is determined by ability of wet and flow rate between the matrix and reinforcement. The flow rate of matrix passing through the reinforcements is a function of permeability of reinforcement, a viscosity of matrix and pressure gradient on molding, and the viscosity of the matrix depends on the mold temperature, molding pressure and shear strain of matrix. Therefore, compression molding experiment was conducted using a heating mold in order to confirm the possibility of matrix impregnation. The impregnation of the matrix through the porosities between the woven yarns was confirmed by the cross-sectional SEM image of compression molded parts. An injection molding process was also performed at a short cycle time, high molding pressure and low mold temperature than those of compression experiment conditions. Deterioration of impregnation on the surface of molded parts were caused by these injection conditions and it could be the reason of decreasing the maximum tensile strength. In order to improve impregnation of matrix on the surface, injection/compression molding and insert-over molding were applied. As a result of applying injection/compression molding and insert-over molding, it was shown that the improvement of impregnation on the surface and the maximum tensile strength was increased about 2.8 times than the virgin matrix.

Characteristics of Run-up Height over Sandy Beach with Submerged Breakwaters ; PART II - Effect of Shape of Submerged Breakwaters (잠제 설치 연안의 처오름 높이 특성 ; PART II - 잠제의 제원에 의한 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.429-439
    • /
    • 2008
  • The purpose of this study is to examine the characteristics of run-up height over sandy beach due to the shape of submerged breakwater. For the discussion on it in detail, 3-Dimensional numerical model with Large Eddy Simulation, which is able to simulate directly interaction of Wave Structure Sandy beach (hereafter, LES-WASS-3D; Hur and Lee, 2007) has been used to simulate run-up height over sandy beach as well as wave field around submerged breakwaters. Using the results obtained from numerical simulation, the effects of the shape of submerged breakwaters (crown height, crown width, crown length and submerged breakwater's slope gradient) on run-up height over sandy beach have been discussed related to the wave height distribution and characteristics of up-layer flow around ones.

Extraction of Road Structure Elements for Developing IFC(Industry Foundation Classes) Model for Road (도로분야 IFC 확장을 위한 도로시설의 구성요소 도출)

  • Moon, Hyoun-Seok;Choi, Won-Sik;Kang, Leen-Seok;Nah, Hei-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1195-1203
    • /
    • 2014
  • Since IFC (Industry Foundation Classes) 4 is based on the representation of 3D elements for an architecture project, and does not define standardized shapes for civil projects such as roads, bridges, and tunnels etc, it has limitations in securing interoperability for exchanging a shape information model for the civil projects. Besides, since road facilities have a linear reference, which is modeled along the center alignment, it is difficult the designers to create a standardized 3D road model. The aim of this study is to configure structure elements and their attribute for a road in the perspective of 3D design for developing a shape information model for the road. To solve these issues, this study analyzes the design documents, which consist of a road design handbook, guide, specifications and standards, and then extract shape elements and their attributes of road structures. Such shape elements are defined as an entity item and we review a hierarchical structure of a road shape defined by a virtual road model. The detailed elements and their attributes can be utilized as a 3D shape information model for constructing BIM (Building Information Modeling) environment for Infrastructures. Besides, it is expected that the suggested items will be utilized as a base data for extending to IFC for a road subdividing the detailed shapes, types and attributes for road projects.

Investigating the effects of non-persistent cracks' parameters on the rock fragmentation mechanism underneath the U shape cutters using experimental tests and numerical simulations with PFC2D

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Abad, Sh. Mohamadi Bolban;Marji, Mohammad Fatehi;Saeedi, Gholamreza;Yu, Yibing
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.495-513
    • /
    • 2022
  • This paper aims to study the fracture mechanism of rocks under the 'u'shape cutters considering the effects of crack (pre-existing crack) distances, crack spacing and crack inclination angles. The effects of loading rates on the rock fragmentation underneath these cutters have been also studied. For this purpose, nine experimental samples with dimensions of 5 cm×10 cm×10 cm consisting of the non-persistent cracks were prepared. The first three specimens' sets had one non-persistent crack (pre-existing crack) with a length of 2 cm and angularity of 0°, 45°, and 90°. The spacing between the crack and the "u" shape cutter was 2 cm. The second three specimens" set had one non-persistent crack with a length of 2 cm and angularity of 0°, 45°, and 90° but the spacing between pre-existing crack and the "u" shape cutter was 4 cm. The third three specimens'set has two non-persistent cracks with lengths of 2 cm and angularity of 0°, 45° and 90°. The spacing between the upper crack and the "u" shape cutter was 2 cm and the spacing between the lower crack and the upper crack was 2 cm. The samples were tested under a loading rate of 0.005 mm/s. concurrent with the experimental investigation. The numerical simulations were performed on the modeled samples with non-persistent cracks using PFC2D. These models were tested under three different loading rates of 0.005 mm/s, 0.01 mm/sec and 0.02 mm/sec. These results show that the crack number, crack spacing, crack angularity, and loading rate has important effects on the crack growth mechanism in the rocks underneath the "u" shape cutters. In addition, the failure modes and the fracture patterns in the experimental tests and numerical simulations are similar to one another showing the validity and accuracy of the current study.