• Title/Summary/Keyword: 2-D numerical analysis

Search Result 1,634, Processing Time 0.027 seconds

Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate

  • Jia, Anqiang;Liu, Haiyan;Ren, Lijian;Yun, Yingxia;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.111-127
    • /
    • 2020
  • The goal of this study is to fill this apparent gap in the area about investigating the effect of porosity distributions on vibrational behavior of FG sectorial plates resting on a two-parameter elastic foundation. The response of the elastic medium is formulated by the Winkler/Pasternak model. The internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The model is proposed with material parameters varying in the thickness of plate to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. The 2-D differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite plates, it is crucial to consider porosities inside the material structure.

Wave control fuction and friction damping of a pile-supported floating body (말뚝계류식 부유체의 파랑제어 기능과 마찰감에 관한 연구)

  • 김헌태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 1997
  • The floating body discussed in this study is a 2-D rectangular floating unit supported by four vertical piles at its corners. Structures of this type are frequently seen as floating piers for the crafts in a small harbour. The movement in some modes of motion of such a flating body is fully or partially restrincted by the piles. The authors(Kim et al. 1994) carried out a series of model tests on its wave control function, its motion and the loads on piles. The experimental results showed that a certain degree of intial constriction force which clamps the floating unit in the horizontal direction can effectively reduce the body motion and wave energy without increasing mooring forces. This may be due to the friction forces occuring between the piles and the rollers installed in the mooring equipments on the floating unit. In this paper, we develop a numerical model for the prediction of wave transformation and floating body motions, where the friction force is idealized as the Coulomb friction and linearized into a damping force using the equivalent damping cofficient. This linearization is verified by comparing the results of motions between the linear and nonlinear analysis of the ezuations of motion. We further compare the caculation results by the linear model with the experimental results and discuss the effect of the friction force or the constriction force on body motions and wave energy dissipation.

  • PDF

Group Effects in Pile Group under Lateral Loading (수평력을 받는 군말뚝에서의 말뚝의 상호작용)

  • Ahn Kwang Kuk;Kim Hong Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.47-55
    • /
    • 2005
  • This paper describes the results for a numerical analysis of'single piles and pile oops in clayey soils subjected to monotonous lateral loading using the ABAQUS finite element software. The investigated variables in this study include free head and embedded capped single piles, pile diameter (1.0 m, 0.5 m), pile length (7.0 m, 10.0 m), and pile groups. The 1$\times$3 pile group was selected to investigate the individual pile and group lateral resistance, the distribution of the resistance among the piles, the effects of lateral stresses in front of and on the sides of the piles, and the effect of a cap on the lateral resistance of the leading pile. The soil was modeled using Cam-clay constitutive relationship and the pile was considered as a elastic circular concrete pile. The results show that the size of the cap influences lateral capacity of sin pile. The results also show in pile groups, the pile-soil-pile interaction and the cap effect the resistance in the leading pile, and the p-multiplier for the leading pile of greater than 1.0 was able to be obtained.

Seismic loss-of-support conditions of frictional beam-to-column connections

  • Demartino, Cristoforo;Monti, Giorgio;Vanzi, Ivo
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.527-538
    • /
    • 2017
  • The evaluation of the loss-of-support conditions of frictional beam-to-column connections using simplified numerical models describing the transverse response of a portal-like structure is presented in this paper considering the effects of the seismic-hazard disaggregation. Real earthquake time histories selected from European Strong-motion Database (ESD) are used to show the effects of the seismic-hazard disaggregation on the beam loss-of-support conditions. Seismic events are classified according to different values of magnitudes, epicentral distances and soil conditions (stiff or soft soil) highlighting the importance of considering the characteristics of the seismic input in the assessment of the loss-of-support conditions of frictional beam-to-column connections. A rigid and an elastic model of a frame of a precast industrial building (2-DoF portal-like model) are presented and adopted to find the minimum required friction coefficient to avoid sliding. Then, the mean value of the minimum required friction coefficient with an epicentral distance bin of 10 km is calculated and fitted with a linear function depending on the logarithm of the epicentral distance. A complete parametric analysis varying the horizontal and vertical period of vibration of the structure is performed. Results show that the loss-of-support condition is strongly influenced by magnitude, epicentral distance and soil conditions determining the frequency content of the earthquake time histories and the correlation between the maxima of the horizontal and vertical components. Moreover, as expected, dynamic characteristics of the structure have also a strong influence. Finally, the effect of the column nonlinear behavior (i.e. formation of plastic hinges at the base) is analyzed showing that the connection and the column are a series system where the maximum force is limited by the element having the minimum strength. Two different longitudinal reinforcement ratios are analyzed demonstrating that the column strength variation changes the system response.

3-D Structure of a Coronal Jet Seen in Hinode, SDO, and STEREO

  • Lee, Kyoung-Sun;Innes, Davina;Moon, Yong-Jae;Shibata, Kazunari
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.89.1-89.1
    • /
    • 2011
  • We have investigated a coronal jet near the limb on 2010 June 27 by Hinode/X-Ray Telescope (XRT), EUV Imaging Spectrograph (EIS), Solar Optical Telescope (SOT), SDO/Atmospheric Imaging Assembly (AIA), and STEREO. From EUV (AIA and EIS) and soft X-ray (XRT) images we identify the erupting jet feature in cool and hot temperatures. It is noted that there was a small loop eruption in Ca II images of the SOT before the jet eruption. Using high temporal and multi wavelength AIA images, we found that the hot jet preceded its associated cool jet. The jet also shows helical-like structures during the rising period. According to the spectroscopic analysis, the jet structure changes from blue shift to red one with time, implying the helical structure of the jet. The STEREO observation, which enables us to observe this jet on the disk, shows that there was a dim loop associated with the jet. Comparing the observations from the AIA and STEREO, the dim loop corresponds to the jet structure which implies the heated loop. Considering that the structure of its associated active region seen in STEREO is similar to that in AIA observed 5 days before, we compared the jet morphology on the limb with the magnetic fields extrapolated from a HMI vector magnetogram observed on the disk. Interestingly, the comparison shows that the open field corresponds to the jet which is seen as the dim loop in STEREO. Our observations (XRT, SDO, SOT, and STEREO) are well consistent with the numerical simulation of the emerging flux reconnection model.

  • PDF

The Development of Tunnel Behavior Prediction System Using Artificial Neural Network (인공신경망을 이용한 터널 거동 예측 시스템 개발)

  • 이종구;문홍득;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.267-278
    • /
    • 2003
  • Artificial neural networks are efficient computing techniques that are widely used to solve complex problems in many fields. In this study, in order to predict tunnel-induced ground movements, Tunnel Behavior Prediction System (TBPS) was developed by using these artificial neural networks model, based on a Held instrumentation database (i.e. crown settlement, convergence, axial force of rock bolt, compressive and shear stress of shotcrete, stress of concrete lining etc.) obtained from 193 location data of 31 different tunnel sites where works are completed. The study and test of the network were performed by Back Propagation Algorithm which is known as a systematic technique for studying the multi-layer artificial neural network. The tunnel behaviors predicted by TBPS were compared with monitored data in the tunnel sites and numerical analysis results. This study showed that the values obtained from TBPS were within allowable limits. It is concluded that this system can effectively estimate the tunnel ground movements and can also be used f3r tunneling feasibility study, and basic and detailed design and construction of tunnel.

Analysis of Pollutant Loads and Physical Oceanographic Status at the Developing Region of Deep Sea Water in the East Sea (동해 심층수 개발해역의 오염부하량 해석과 해동변동)

  • LEE IN-CHEOL;YOON BAN-SAM
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.14-19
    • /
    • 2005
  • As a basic study for establishing the input conditions of a forecasting/estimating model, used for deep-sea water drainage to the ocean, this study was carried out as follows: 1) estimating the amount of river discharge and pollutant loads into the developing region of deep sea water in the East Sea, Korea, 2) a field observation of tidal current, vertical water temperature, and salinity distribution, 3) 3-D numerical experiment of tidal current to analyze the physical oceanographic status. The amount of river discharge flowing into this study area was estimated at about $462.7{\times}103 m\^3/day$ of daily mean in 2002. Annual mean pollutant load of COD, TN, and TP were estimated at 7.02 ton-COD/day, 4.06 ton-TN/day, and 0.39 ton/day, respectively. Field observation of tidal current normally shows 20-40cm/sec of current velocity at the surface layer, and it decreases under 20cm/sec as the water depth increases. We also found a stratification condition at around 30m water depth in the observation area. The differences in water temperature and salinity, between the surface layer and the bottom layer, were about 18 C and 0.8 psu, respectively. On the other hand, we found a definite trend of 34 psu salinity water mass in the deep sea region.

Earthquake risk assessment of concrete gravity dam by cumulative absolute velocity and response surface methodology

  • Cao, Anh-Tuan;Nahar, Tahmina Tasnim;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.511-519
    • /
    • 2019
  • The concrete gravity dam is one of the most important parts of the nation's infrastructure. Besides the benefits, the dam also has some potentially catastrophic disasters related to the life of citizens directly. During the lifetime of service, some degradations in a dam may occur as consequences of operating conditions, environmental aspects and deterioration in materials from natural causes, especially from dynamic loads. Cumulative Absolute Velocity (CAV) plays a key role to assess the operational condition of a structure under seismic hazard. In previous researches, CAV is normally used in Nuclear Power Plant (NPP) fields, but there are no particular criteria or studies that have been made on dam structure. This paper presents a method to calculate the limitation of CAV for the Bohyeonsan Dam in Korea, where the critical Peak Ground Acceleration (PGA) is estimated from twelve sets of selected earthquakes based on High Confidence of Low Probability of Failure (HCLPF). HCLPF point denotes 5% damage probability with 95% confidence level in the fragility curve, and the corresponding PGA expresses the crucial acceleration of this dam. For determining the status of the dam, a 2D finite element model is simulated by ABAQUS. At first, the dam's parameters are optimized by the Minitab tool using the method of Central Composite Design (CCD) for increasing model reliability. Then the Response Surface Methodology (RSM) is used for updating the model and the optimization is implemented from the selected model parameters. Finally, the recorded response of the concrete gravity dam is compared against the results obtained from solving the numerical model for identifying the physical condition of the structure.

Study on the Optimal Design for HTS Magnetic Levitation Magnet (고온초전도 자기부상자석의 최적설계에 관한 연구)

  • Yoon, Kyung-Yong;Bae, Duck-Kweon;Cho, Heung-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.37-41
    • /
    • 2008
  • Superconducting Electrodynamic suspension(EDS) system is generated by the interaction between the magnetic field made by the induced the eddy current in the ground conductor and the moving magnetic field made by onboard superconducting magnet. The levitation force of EDS system, which is proportional to the strength of the moving magnetic field, becomes saturated according to the increase of the velocity. Especially, the levitation force is influenced by the structure of HTS magnet and ground magnet. This paper deals with the optimal design condition for the HTS levitation magnet. The 3-D numerical analysis with FEM was used to find the distribution of the magnetic field, the optimal coil structure, and the calculation of the levitation force.

Impact of soft and stiff soil interlayers on the pile group dynamic response under lateral harmonic load

  • Masoud Oulapour;Sam Esfandiari;Mohammad M. Olapour
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.583-596
    • /
    • 2023
  • The interlayers, either softer or stiffer than the surrounding layers, are usually overlooked during field investigation due to the small thickness. They may be neglected through the analysis process for simplicity. However, they may significantly affect the dynamic behavior of the soil-foundation system. In this study, a series of 3D finite-element Direct-solution steady-state harmonic analyses were carried out using ABAQUS/CAE software to investigate the impacts of interlayers on the dynamic response of a cast in place pile group subjected to horizontal harmonic load. The experimental data of a 3×2 pile group testing was used to verify the numerical modeling. The effects of thickness, depth, and shear modulus of the interlayers on the dynamic response of the pile group are investigated. The simulations were conducted on both stiff and soft soils. It was found that the soft interlayers affect the frequency-amplitude curve of the system only in frequencies higher than 70% of the resonant frequency of the base soil. While, the effect of stiff interlayer in soft base soil started at frequency of 35% of the resonant frequency of the base soil. Also, it was observed that a shallow stiff interlayer increased the resonant amplitude by 11%, while a deep one only increased the resonant frequency by 7%. Moreover, a shallow soft interlayer increased the resonant frequency by 20% in soft base soils, whereas, it had an effect as low as 6% on resonant amplitude. Also, the results showed that deep soft interlayers increased the resonant amplitude by 17 to 20% in both soft and stiff base soils due to a reduction in lateral support of the piles. In the cases of deep thick, soft interlayers, the resonant frequency reduced significantly, i.e., 16 to 20%. It was found that the stiff interlayers were most effective on the amplitude and frequency of the pile group.