• Title/Summary/Keyword: 2-D grating

Search Result 111, Processing Time 0.034 seconds

Modal Characteristics of Grating-Assisted Directional Coupler with 2D Periodic Patterns (2D 주기적 패턴으로 구성된 격자 구조형 방향성 결합기의 모드 특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.217-222
    • /
    • 2015
  • Longitudinal transmission-line modal theory is applied to analyze the guiding mode characteristics along 1D & 2D grating patterns of plasmonic grating-assisted directional couplers (P-GADC) based on silicon waveguide. By defining supermodes amenable to rigorous analytical solutions and interference between even and odd modes, the field distributions of TE modes for each grating patterns are evaluated. The numerical result reveals that the field distribution with maximum coupling efficiency occurs at P-GADC composed by square grating pattern. That is, it reveals at a minium gap condition of grating period $d_{min}=8.8{\mu}m$ different from conventional phase-matching condition of GADC.

Fabrication and characterization of an optical demultiplexer using a concave diffraction grating (Concave 회절격자를 이용한 광분파기 제작과 특성 측정)

  • 강리할
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.227-231
    • /
    • 1990
  • A SiO2/Si concave diffraction grating(period: 1.3${\mu}{\textrm}{m}$) for the angular dispersive element of WDM was fabricated by sandwiching the SiO2/Si plane diffraction grating between a slab waveguide and a cylindrical concave block. Using this concave grating and input/output fiber, and wavelength division demultiplexer was composed. The demultiplexer has five channels, the insertion loss of 30dB, the wavelength spacing per channel of 7nm and crosstalk of-15dB.

  • PDF

Design of High Efficiency Transmission Dielectric Grating for Chirped Pulse Amplification (CPA 시스템 구성을 위한 고효율 투과형 유전체 회절격자 설계)

  • Cho, Hyun-Ju;Jung, Jae-Woo;Lee, Sang-Hyun;Kim, Soojong;Lee, Jeongseop;Jin, Daehyun;Jung, Jiho;Son, Seonghyun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.260-266
    • /
    • 2022
  • A diffraction grating structure composed of two matching layers and two grating layers was formed, and a diffraction grating with high transmission diffraction efficiency in the -1st order was designed through an optimization technique. The designed diffraction grating had a transverse electric wave diffraction efficiency of 99.997% at the design center wavelength, and had a wavelength width of 80 nm and an incident angle width of 20.0° that maintained a diffraction efficiency of 95% or more. By performing the grating tolerance analysis, it was confirmed that the thickness tolerance for a diffraction efficiency of 95% or more was secured to at least 60 nm, and the diffraction efficiency could be maintained even in a trapezoidal shape with an internal angle of less than 10°.

Ultra High-speed 3-dimensional Profilometry Using a Laser Grating Projection System

  • Park, Yoon-Chang;Ahn, Seong-Joon;Kang, Moon-Ho;Kwon, Young-Chul;Ahn, Seung-Joon
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.464-467
    • /
    • 2009
  • The grating projection method with phase-shifting technique is very useful in measuring the 3-dimensional (3D) shape with high accuracy and speed. In this work, we have developed an ultra high-speed digital laser grating projection system using a high-power laser diode and a highsensitivity CMOS camera. With our system, the optical measurement required to find out the profile of a 3D object could be carried out within 2.6 ms, which is a significant ($\sim$10 times) improvement compared with those of the previous studies.

Analysis on Design and Fabrication of High-diffraction-efficiency Multilayer Dielectric Gratings

  • Cho, Hyun-Ju;Lee, Kwang-Hyun;Kim, Sang-In;Lee, Jung-Hwan;Kim, Hyun-Tae;Kim, Won-Sik;Kim, Dong Hwan;Lee, Yong-Soo;Kim, Seoyoung;Kim, Tae Young;Hwangbo, Chang Kwon
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.125-133
    • /
    • 2018
  • We report an in-depth analysis of the design and fabrication of multilayer dielectric (MLD) diffraction gratings for spectral beam combining at a wavelength of 1055 nm. The design involves a near-Littrow grating and a modal analysis for high diffraction efficiency. A range of wavelengths, grating periods, and angles of incidence were examined for the near-Littrow grating, for the $0^{th}$ and $-1^{st}$ diffraction orders only. A modal method was then used to investigate the effect of the duty cycle on the effective indices of the grating modes, and the depth of the grating was determined for only the $-1^{st}$-order diffraction. The design parameters of the grating and the matching layer thickness between grating and MLD reflector were refined for high diffraction efficiency, using the finite-difference time-domain (FDTD) method. A high reflector was deposited by electron-beam evaporation, and a grating structure was fabricated by photolithography and reactive-ion etching. The diffraction efficiency and laser-induced damage threshold of the fabricated MLD diffraction gratings were measured, and the diffraction efficiency was compared with the design's value.

A Study on a Compact Coupler between an Optical Fiber and a Grating-assisted Graphene-embedded Silicon Waveguide for a Wavelength-selective Photodetector

  • Heo, Hyungjun;Kim, Sangin
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.514-524
    • /
    • 2017
  • We proposed an integrated wavelength-selective photodetector based on a grating-assisted contradirectional coupler and a graphene absorption layer for a coarse wavelength division multiplexing (CWDM) communication system. The center wavelength of the absorption spectrum of the proposed device can be tuned simply by changing the period of the grating, and the proposed device structure is suitable to forming a cascaded structure. Therefore, an array of the proposed device of different grating periods can be used for simultaneous wavelength demultiplexing and signal detection in a CWDM communication system. Our theoretical study showed that the designed device with a grating length of $500{\mu}m$ could have an absorption of 95.1%, an insertion loss of 0.2 dB, and a 3 dB bandwidth of 7.5 nm, resulting in a -14 dB crosstalk to adjacent CWDM channels. We believe that the proposed device array can provide a compact and economic solution to receiver implementation in the CWDM system by combining functions of wavelength demultiplexing and signal detection.

Smith-purcell radiation by a periodic strip grating over a grounded dielectric slab (접지된 유전체층 위의 주기적인 스트립격자에 의한 smith-purcell 복사)

  • 조웅희;이철훈;이종익;김병민;조영기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.2
    • /
    • pp.19-24
    • /
    • 1998
  • The problem of Smith-Purcell radiation by a strip grating over a groundeddielectric slabl is analyzed by use of the equivalence principle, Floquet's theorem, and the method of moment. the relative radiation intensities of the space harmonics, computed by use of the proposed method, for the appropriately chosen charge velocities and grating dimensions are presented. In particular, some relationships between the smith-purcell radiation and the leaky-wave radiation in the proposed geometry are investigated.

  • PDF

Improvement of Solar Conversion Efficiency in a c-Si PV Sub-Module Integrated with SiOx Anti-Reflection Grating for Oblique Optical Irradiation (측면입사광에 대한 SiOx 무반사 회절격자 결합 c-Si PV 서브-모듈의 광전변환효율 향상)

  • Shim, Ji-Hyun;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.325-330
    • /
    • 2017
  • We fabricated 1-D and 2-D diffraction gratings of SiOx anti-reflection (AR) film grown on a quartz substrate and integrated them into a c-Si photovoltaic (PV) submodule. The light-trapping effect of the resulting submodules was studied in terms of the oblique optical incident angle, ${\theta}_i$. As the ${\theta}_i$ increased, solar conversion efficiency, ${\eta}$, was improved as expected by the increased optical transmission caused by the grating. For ${\theta}_i{\leq}30^{\circ}$, the relative solar conversion efficiency, ${\Delta}{\eta}$, of a 1-D SiOx (t=300 nm) grating, compared to that of a flat SiOx AR-coated integrated PV submodule, was improved very little, with a small variation of within 2%, but increased markedly for ${\theta}_i{\geq}40^{\circ}$. We observed a change of ${\Delta}{\eta}$ as large as 10.7% and 9.5% for the SiOx grating of period t=800 nm and 1200 nm, respectively. For a 2-D SiOx (t=300 nm) grating integrated PV submodule, however, the optical trapping behavior was similar in terms of ${\theta}_i$ but its variation was small, within ${\pm}1.0%$.

Polymeric Waveguides with Bragg Gratings in the Middle of the Core Layer

  • Jeong, In-Soek;Park, Hae-Ryeong;Lee, Sang-Won;Lee, Myung-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.294-298
    • /
    • 2009
  • In this paper we proposed a new Bragg grating waveguide in order to improve reflectivity and to achieve compactness. Bragg gratings with various thicknesses were engraved in the middle of the core layer with a length of 3 mm. For the sake of cost-effectiveness, the $3^{rd}$ order Bragg grating waveguides were fabricated via conventional photolithography. The maximum reflectivities for the fixed width waveguide of $6{\mu}m$ with the 0.1 and $0.3{\mu}m$-thick Bragg gratings were, -13.14 and -6.25 dB, respectively, and the Bragg wavelengths were 1562.28, 1564.10 nm, respectively. A slight increase in the Bragg grating thickness can result in a remarkable reduction in the length of the Bragg grating waveguide with a fixed reflectivity.

Cascaded Volume Holographic Gratings for expanding the Channel Number of a Optical Demultiplexer

  • Lee, Kwon-Yeon;Jeung, Sang-Huek;Do, Duc-Dung;An, Jun-Won;Kim, Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.84-90
    • /
    • 2007
  • In this paper, the demonstration of a 130-channel optical demultiplexer based on the cascaded volume holographic gratings is presented. By serially adding the second holographic grating, which has different grating period, slant angle, and center wavelength compared to those of the first grating, the operating wavelength range of the optical demultiplexer could be expanded, and therefore, the number of channels of the holographic demultiplexer is increased by twice. As a result of the experiment, a 0.4-nm-spaced demultiplexer with the channel uniformity of 3.5 dB, the 3dB-bandwidth of 0.12nm, and the channel crosstalk of -20dB is experimentally achieved.

  • PDF