DOI QR코드

DOI QR Code

Design of High Efficiency Transmission Dielectric Grating for Chirped Pulse Amplification

CPA 시스템 구성을 위한 고효율 투과형 유전체 회절격자 설계

  • 조현주 ((주)옵토닉스 광학사업부) ;
  • 정재우 ((주)옵토닉스 광학사업부) ;
  • 이상현 ((주)한화 창원공장) ;
  • 김수종 ((주)이오테크닉스 기술연구소) ;
  • 이정섭 ((주)이오테크닉스 기술연구소) ;
  • 진대현 ((주)이오테크닉스 기술연구소) ;
  • 정지호 ((주)이오테크닉스 기술연구소) ;
  • 손승현 ((주)이오테크닉스 기술연구소)
  • Received : 2022.10.18
  • Accepted : 2022.11.08
  • Published : 2022.12.25

Abstract

A diffraction grating structure composed of two matching layers and two grating layers was formed, and a diffraction grating with high transmission diffraction efficiency in the -1st order was designed through an optimization technique. The designed diffraction grating had a transverse electric wave diffraction efficiency of 99.997% at the design center wavelength, and had a wavelength width of 80 nm and an incident angle width of 20.0° that maintained a diffraction efficiency of 95% or more. By performing the grating tolerance analysis, it was confirmed that the thickness tolerance for a diffraction efficiency of 95% or more was secured to at least 60 nm, and the diffraction efficiency could be maintained even in a trapezoidal shape with an internal angle of less than 10°.

2개의 결합층과 2개의 격자 층으로 구성된 회절격자 구조를 형성하고, 최적화 기법을 통하여 -1차에서 높은 투과 회절 효율을 가지는 회절격자를 설계하였다. 설계된 회절격자는 설계 중심파장에서 99.997%의 transverse electric wave 회절 효율을 가지고 있었으며, 95% 이상의 회절 효율을 유지하는 파장 폭이 80 nm이고 입사각 폭이 20.0°이었다. 회절격자 공차 분석을 수행하여 95% 이상의 회절 효율을 가지기 위한 두께 공차가 최소 60 nm 이상 확보되어 있고, 내부각도 10° 이내의 사다리꼴 모양에서도 회절 효율을 유지할 수 있음을 확인하였다.

Keywords

Acknowledgement

이 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(과제번호: 20017395).

References

  1. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300, 1553-1555 (2003). https://doi.org/10.1126/science.1083433
  2. A. G. Okhrimchuk, V. K. Mezentsev, V. V. Dvoyrin, A. S. Kurkov, E. M. Sholokhov, S. K. Turitsyn, A. V. Shestakov, and I. Bennion, "Waveguide- saturable absorber fabricated by femtosecond pulses in YAG:Cr crystal for Q-switched operation of Yb-fiber laser," Opt. Lett. 34, 3881-3883 (2009). https://doi.org/10.1364/OL.34.003881
  3. C. Xu and F. W. Wise, "Recent advances in fiber lasers for nonlinear microscopy," Nat. Photonics 7, 875-882 (2013). https://doi.org/10.1038/nphoton.2013.284
  4. K. Sugioka, "Progress in ultrafast laser processing and future prospects," Nanophotonics 6, 393-413 (2017). https://doi.org/10.1515/nanoph-2016-0004
  5. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 55, 447-449 (1985). https://doi.org/10.1016/0030-4018(85)90151-8
  6. T. P. Rasmussen, "Compact and high performance spectrometers based on novel transmission gratings with high dispersion," Appl. Spectrosc. 70, 804-809 (2016). https://doi.org/10.1177/0003702816638271
  7. V. Ivanov, "Compact optical grating compressor," Opt. Express 30, 35338-35347 (2022). https://doi.org/10.1364/OE.468814
  8. J. E. Harvey and R. N. Pfisterer, "Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings," Opt. Eng. 58, 087105 (2019).
  9. N. Bonod and J. Neauport, "Diffraction gratings: from principles to applications in high intensity lasers," Adv. Opt. Photonics 8, 156-199 (2016). https://doi.org/10.1364/AOP.8.000156
  10. H. T. Nguyen, B. W. Bryan, J. A. Britten, R. D. Boyd, and M. D. Perry, "High-efficiency fused-silica transmission gratings," Opt. Lett. 22, 142-144 (1997). https://doi.org/10.1364/OL.22.000142
  11. T. Clausnitzer, J. Limpert, K. Zollner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tunnermann, M. Jupe, and D. Ristau, "Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems," Appl. Opt. 42, 6934-6938 (2003). https://doi.org/10.1364/AO.42.006934
  12. K. Nagashima, A. Kosuge, Y. Ochi, and M. Tanaka, "Improvement of diffraction efficiency of dielectric transmission gratings using anti-reflection coating," Opt. Express 21, 18640-18645 (2013). https://doi.org/10.1364/OE.21.018640
  13. K. Hehl, J. Brischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bodefeld, W. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, "High-efficiency dielectric reflection gratings: design, fabrication, and analysis," Appl. Opt. 38, 6257-6271 (1999). https://doi.org/10.1364/AO.38.006257
  14. T. Clausnitzer, T. Kampfe, E.-B. Kley, and A. Tunnermann, U. Peschel, A.V. Tishchenko, and O. Parriaux, "An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings," Opt. Express 13, 10448-10456 (2005). https://doi.org/10.1364/OPEX.13.010448
  15. T. Clausnitzer, T. Kampfe, E.-B. Kley, and A. Tunnermann, A. Tishchenko, and O. Parriaux, "Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting," Appl. Opt. 46, 819-826 (2007). https://doi.org/10.1364/AO.46.000819
  16. H.-J. Cho, K.-H. Lee, S.-I. Kim, J.-H. Lee, H.-T. Kim, W.- S. Kim, D. H. Kim, Y.-S. Lee, S. Kim, T. Y. Kim, and C. K. Hwangbo, "Analysis on design and fabrication of high-diffraction-efficiency multilayer dielectric gratings," Curr. Opt. Photonics 2, 125-133 (2018). https://doi.org/10.3807/COPP.2018.2.2.125
  17. H.-J. Cho, S.-J. Kim, K.-D. Kim, S.-P. Cho, I.-S. Tak, G.-H. Kim, B.-J. Moon, D. H. Kim, Y.-S. Lee, S.-I. Kim, H. T. Kim, and J. Cho, "Simply structured polarization-independent high efficiency multilayer dielectric gratings," Appl. Opt. 61, 8446-8453 (2022). https://doi.org/10.1364/AO.469253