• 제목/요약/키워드: 2-D Wave tank experiment

검색결과 17건 처리시간 0.024초

An Experimental Study on Wave Absorber Performance of Combined Punching Plate in a Two-Dimensional Mini Wave Tank

  • Jung, Hyen-Cheol;Koo, Weoncheol
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.113-120
    • /
    • 2021
  • In order to perform a precise wave tank experiment, it is necessary to maintain the incident wave generated by the wavemaker in a steady state and to effectively remove the reflected waves. In this paper, a combined sloping-wall-type punching plate wave absorber was proposed to attenuate reflected waves effectively in a two-dimensional mini wave tank. Using the four-point reflection separation method, the reflected waves were measured to determine the reflection coefficients. Experiments were conducted under various punching plate porosities, sloping plate angles, and incident wave conditions to evaluate the performance of the combined punching plate wave absorber. The most effective wave absorbing performance was achieved when the porosity was 10% and the inclination angle of the punching plate was 18.6° under the present condition. It was also found that the installation of the sloping plate could improve the wave attenuation performance by generating the shoaling effect of the incident wave.

2D Computational Analysis of Overtopping Wave Energy Convertor

  • ;현범수
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.1-6
    • /
    • 2009
  • An Overtopping Wave Energy Convertor (OWEC) is an offshore wave energy convertor used for collecting overtopping waves and converting the water pressure head into electric power through hydro turbines installed in a vertical duct affixed to the sea bed. A numerical wave tank based on the commercial computational fluid dynamics code Fluent is established for the corresponding analysis. The Reynolds Averaged Navier-Stokes equation and two-phase VOF model are utilized to generate the 2D numerical linear propagating waves, which are validated by the overtopping experiment results. Calculations are made for several incident wave conditions and shape parameters for the overtopping device. Both the incident wave periods and heights have evident effects on the overtopping performance of the OWEC device. The computational analysis demonstrates that the present overtopping device is more compatible with longer incident wave periods.

고립파(지진해일)의 파형분포가 불투과 경사면의 처오름에 미치는 영향 (Effects of Waveform Distribution of Tsunami-Like Solitary Wave on Run-up on Impermeable Slope)

  • 이우동;김정욱;허동수
    • 한국해양공학회지
    • /
    • 제33권1호
    • /
    • pp.76-84
    • /
    • 2019
  • For decades, solitary waves have commonly been used to simulate tsunami conditions in numerical studies. However, the main component of a tsunami waveform acts at completely different spatial and temporal distributions than a solitary waveform. Thus, this study applied a 2-D numerical wave tank that included a non-reflected tsunami generation system based on Navier-Stokes equations (LES-WASS-2D) to directly simulate the run-up of a tsunami-like solitary wave on a slope. First, the waveform and velocity due to the virtual depth factor were applied to the numerical wave tank to generate a tsunami, which made it possible to generate the wide waveform of a tsunami, which was not reproduced with the existing solitary wave approximation theory. Then, to validate the applied numerical model, the validity and effectiveness of the numerical wave tank were verified by comparing the results with the results of a laboratory experiment on a tsunami run-up on a smooth impermeable 1:19.85 slope. Using the numerical results, the run-up characteristics due to a tsunami-like solitary wave on an impermeable slope were also discussed in relation to the volume ratio. The maximum run-up heights increased with the ratio of the tsunami waveform. Therefore, the tsunami run-up is highly likely to be underestimated compared to a real tsunami if the solitary wave of the approximation theory is applied in a tsunami simulation in a coastal region.

규칙파중 횡동요 하는 사각형 바지선 주위 유동의 수치모사 (Numerical Simulation of Flow around Free-rolling Rectangular Barge in Regular Waves)

  • 정재환;윤현식;권기조;조성준
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.15-20
    • /
    • 2011
  • This study aimed at validating the adopted numerical methods to solve two-phase flow around a two-dimensional (2D) rectangular floating structure in regular waves. A structure with a draft equal to one half of its height was hinged at the center of gravity and free to roll with waves that had the same period as the natural roll period of a rectangular barge. In order to simulate the 2D incompressible viscous two-phase flow in a wave tank with the rectangular barge, the present study used the volume of fluid (VOF) method based on the finite volume method with a standard turbulence model. In addition, the sliding mesh technique was used to handle the motion of the rectangular barge induced by the fluid-structure interaction. Consequently, the present results for the flow field and roll motion of the structure had good agreement with those of the relevant previous experiment.

파랑의 수평운동을 이용한 파력발전장치 개발 (Development of Wave Power Generator using Horizontal Motions of the Wave)

  • 황성수;박일흠;이동수;양경욱
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권2호
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, we suggested the wave power generator using horizontal motions of the wave for use in the coastal sea. The length of the horizontal movement of the wave in the vicinity of the sea surface is larger than the length of the vertical reciprocating movement of the wave, hence the proposed device has a wave power transmission plate. In addition, because the motion of the wave is maximum to the sea surface, by arranging the buoyancy tanks at the top of the wave power transmission plate, it is always capable of vertical movement in accordance with the sea surface. To confirm the usefulness of the proposed wave power generator, we constructed a mathematical model of the wave power generator and carried out simulation using bondgraph. Furthermore, the efficiency was verified by measuring the degree of electrical energy production through a preliminary experiment.

A STUDY ON THE HYDROELASTIC RESPONSE OF A PLATE UNDER IMPULSIVE PRESSURES DUE TO BREAKING WAVES

  • Park, Hang-Shoon;Lee, Dong-Yeon
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제2권1호
    • /
    • pp.1-14
    • /
    • 1996
  • In this paper, breaking waves are generated in a 2-D wave tank and simulated by using a higher-order boundary element method. A piston-type wavemaker is operated by signals composed of elementary waves. The phase of elementary waves is determined by the linear theory such that they are focused to a prescribed position. Calculated plunging waves coincide well with experiment. A steel box with different plate thicknesses is installed at a predetermined position in the tank. Measured impulsive pressures due to breaking waves are found to be 0.8-1.2$\rho$C2, where $\rho$ corresponds to water density and C to wave celerity. The transverse displacement of the plate is described in terms of modal eigenfunctions. The natural frequencies measured by impact tests in air for thin plate coincide with the computational and theoretical values. The radiationpotential due to plate vibration is derived and the radiation force is expressed in terms of hydroelastic added mass and damping forces. Comparison of natural frequencies of plate in water proves that hydroelastic added mass and damping are properly considered. The measured strain due to regular waves supports the calculated one, but there are apparent discrepancies between theory and experiment in the impulsive case.

부유식 진동수주형 파력발전기(BBDB)의 유체 동역학적 성능 실험 연구 (Experimental Study of Hydrodynamic Performance of Backward Bent Duct Buoy (BBDB) Floating Wave Energy Converter)

  • 김성재;권진성;김준동;구원철;신성원;김규한
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.53-58
    • /
    • 2012
  • An experimental study on the hydrodynamic performance of a backward bent duct buoy (BBDB) was performed in a 2D wave tank. The BBDB is one of the promising oscillating water column (OWC) types of floating wave energy converters. Two different corner-shaped BBDBs (sharp-corner and round-corner) were used to measure the maximum chamber surface elevations and body motions for various incident wave conditions, and their hydrodynamic characteristics were compared. In order to investigate the effect of the pneumatic pressure inside the chamber, the heave and pitch angle interacted with elevations were compared for both open chamber and partially open chamber BBDBs. From the comparison study, the deviation in the chamber surface elevations between the two shapes of BBDBs was found to be significant near the resonance period, which may be explained by viscous energy loss. It was also found that the pneumatic pressure noticeably affected the chamber surface elevation and body motions.

밀도성층을 통과하는 수면파 및 내부파의 전파특성 (Characteristics of Surface and Internal Wave Propagation through Density Stratification)

  • 이우동;허동수
    • 대한토목학회논문집
    • /
    • 제36권5호
    • /
    • pp.819-830
    • /
    • 2016
  • 아직까지 밀도성층을 통과하는 파랑변형에 관한 동수학적 특성에 대해서 명확히 밝혀진 부분은 그다지 많지 않다. 따라서 본 연구에서는 2층 밀도성층을 통과하는 파랑의 수리특성을 수치적으로 해석하기 위하여 온도와 염분에 따른 밀도류를 해석할 수 있게 개량된 3차원 수치파동수조(LES-WASS-3D ver. 2.0)를 이용하여 수치시뮬레이션을 수행하였다. 그리고 이용하는 수치파동수조의 타당성 및 유효성을 확인하기 위하여 Stokes 3차 파랑이론에 근거한 내부파형을 비교 검토하였다. 수치시뮬레이션 결과로부터 밀도성층을 통과하는 수면파 및 내부파의 파고가 감소하는 현상을 알 수 있었으며, 이것은 상 하층의 밀도차이에 기인한 전파속도 차이로 인하여 계면에서 강한 와도가 발생하기 때문으로 확인되었다. 또한 밀도성층의 밀도차이가 증가할수록, 상 하층의 수심비가 증가할수록(상층의 수심이 깊어질수록) 와도가 강하게 발생하여 수면파 및 내부파의 파고감쇠를 심화시키는 것을 확인할 수 있었다.

일 유입유량 변동과 공정내 표면파 전파속도 상관성 분석 (Analysis of relationship between daily inflow rate fluctuation and surface wave transfer velocity in water treatment processes)

  • 박노석;임성은;김성수;황준식;정남정
    • 상하수도학회지
    • /
    • 제22권2호
    • /
    • pp.239-243
    • /
    • 2008
  • The fluctuation of inlet flow to a water treatment plant makes a serious problem that it can change the outlet flow-rate from each process abruptly, and ultimately occur the detachment of the attached particles inside each unit process. Also, since it takes very short time for the surface wave occurred from the fluctuation of inlet flow to reach the latter processes, it is impossible for operators to cope with that stably. Therefore this study was conducted to suggest the methodology for accurately predicting the travel time of surface wave occurred from the fluctuation of inlet flow to reach the latter process. Through the experiment, which was carried out for the full-scale water treatment plants(capacity : 2,000m3/d), it could be confirmed that the flow rate fluctuation from equalization tank produce the surface wave. And the wave transfer velocity is a function of the hydraulic radius and the length of each open type tanks which are comprised in the latter processes.

규칙파 중 사각형 부유식 구조물의 횡동요 운동특성에 대한 연구 (Study on Roll Motion Characteristics of a Rectangular Floating Structure in Regular Waves)

  • 김민규;정광효;박성부;이강남;박일룡;서성부
    • 한국해양공학회지
    • /
    • 제33권2호
    • /
    • pp.131-138
    • /
    • 2019
  • This study focused on the roll motion characteristics of a two-dimensional (2D) rectangular floating structure under regular beam sea conditions. An experiment was conducted in a 2D wave tank for a roll free decay test in calm water and the roll motion in a range of regular waves with and without heave motion to investigate the motion response and heave influence on the roll motion. A numerical study was carried out using Reynolds-averaged Navier Stokes (RANS)-based CFD simulations. A grid convergence test was conducted to accurately capture the wave condition on the free surface based on the overset mesh and wave forcing method. It was found in the roll free decay test that the numerical results agreed well with the experimental results for the natural roll period and roll damping coefficient. It was also observed that the heave motion had an impact on the roll motion, and the responses of the heave and roll motion from the CFD simulations were in reasonable agreement with those from the experiment.