• Title/Summary/Keyword: 2-D Motion

Search Result 1,431, Processing Time 0.03 seconds

Contribution of color to perception of 2D and 3D motion

  • Shioiri, Satoshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1152-1153
    • /
    • 2009
  • Although motion impression is weak with isoluminant color stimuli, it has been shown that color signals influence motion perception. We discuss similarities and differences between color motion and luminance motion, focusing on temporal characteristics of the perception of the 2D and 3D motion.

  • PDF

The Effect of Spanwise Flow and Wing Rotation on the Aerodynamic Characteristics in Flapping Motion (날개 길이방향 유동과 날개 회전이 날개짓 운동의 공기역학적 특성에 미치는 효과)

  • Oh, Hyun-Taek;Choi, Hang-Cheol;Chung, Jin-Taek;Kim, Kwang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.753-760
    • /
    • 2007
  • In a 3-D flapping motion, the spanwise flow is generated while the wing is moved on the stroke plane. And at the end of each stroke, the rotational circulation is generated due to a wing rotation. In this study, to evaluate the effect of spanwise flow and wing rotation on the aerodynamic characteristics in 3-D flap 753ping motion, a 3-D flapping motion was compared with a 2-D translating motion. In each flapping motion, the aerodynamic forces were measured with respect to the angles of attack and Reynolds number. The aerodynamic forces generated by 2-D translating motion were higher than those generated by 3-D flapping motion. While the lift of 3-D flapping motion was increased until the angle of attack $60^{\circ}$ at mid-stroke, the lift generated by 2-D translating motion was decreased above the angle of attack 40° at mid stroke. Also, at the end of each stroke, the aerodynamic forces were increased rapidly due to wing rotation.

3D Facial Synthesis and Animation for Facial Motion Estimation (얼굴의 움직임 추적에 따른 3차원 얼굴 합성 및 애니메이션)

  • Park, Do-Young;Shim, Youn-Sook;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.618-631
    • /
    • 2000
  • In this paper, we suggest the method of 3D facial synthesis using the motion of 2D facial images. We use the optical flow-based method for estimation of motion. We extract parameterized motion vectors using optical flow between two adjacent image sequences in order to estimate the facial features and the facial motion in 2D image sequences. Then, we combine parameters of the parameterized motion vectors and estimate facial motion information. We use the parameterized vector model according to the facial features. Our motion vector models are eye area, lip-eyebrow area, and face area. Combining 2D facial motion information with 3D facial model action unit, we synthesize the 3D facial model.

  • PDF

Recovery of 3-D Motion from Time-Varying Image Flows

  • Wohn, Kwang-Yun;Jung, Soon-Ki
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.77-86
    • /
    • 1996
  • In this paper we deal with the problem of recovering 3-D motion and structure from a time-varying 2-D velocity vector field. A great deal has been done on this topic, most of which has concentrated on finding necessary and sufficient conditions for there to be a unique 3-D solution corresponding to a given 2-D motion. While previous work provides useful theoretical insight, in most situations the known algorithms have turned out to be too sensitive to be of much practical use. It appears that any robust algorithm must improve the 3-D solutions over time. As a step toward such algorithm, we present a method for recovering 3-D motion and structure from a given time-varying 2-D velocity vector field. The surface of the object in the scene is assumed to be locally planar. It is also assumed that 3-D velocity vectors are piecewise constant over three consecutive frames (or two snapshots of flow field). Our formulation relates 3-D motion and object geometry with the optical flow vector as well as its spatial and temporal derivatives. The linearization parameters, or equivalently, the first-order flow approximation (in space and time) is sufficient to recover rigid body motion and local surface structure from the local instantaneous flow field. We also demonstrate, through a sensitivity analysis carried out for synthetic and natural motions in space, that 3-D motion can be recovered reliably.

  • PDF

Region adaptive motion compensated error coding using extension-interpolation/2D-DCT (확장-보간/2D-DCT 기법을 이용한 영역 적응적인 이동보상 오차의 보호화)

  • 조순재;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1691-1697
    • /
    • 1997
  • This paper presents a new motion compensated error coding method suitable for region based image coding system. Compared with block based conding, the region based coding improves subjective quality as it estimates and compensates 2D (or 3D) translantional, rotational, and scaling motion for each regions. although the region based coding has this advantage, its merit is reduced as bock-DCT (2D-DCT) is used to encode motion-compensated error. To overcome this problem, a new region adaptive motion compensated error coding technique which improver subjective and objective quality in the region boundary is proposed in this paper. In the proposed method, regions with large error are estimated using contour of the regions and contrast between the regions. The regions estiated as those with large error are coded by arbitrarily shaped image segment coding method. The mask information of the coded regions is not transmitted because it is estimated as the same algorithm in the encoder and the decoder. The proposed region adaptive motion conpensated error coding method improves about 0.5dB when it is compared with conventional block based method.

  • PDF

Motion Depth Generation Using MHI for 3D Video Conversion (3D 동영상 변환을 위한 MHI 기반 모션 깊이맵 생성)

  • Kim, Won Hoi;Gil, Jong In;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-437
    • /
    • 2017
  • 2D-to-3D conversion technology has been studied over past decades and integrated to commercial 3D displays and 3DTVs. Generally, depth cues extracted from a static image is used for generating a depth map followed by DIBR (Depth Image Based Rendering) for producing a stereoscopic image. Further, motion is also an important cue for depth estimation and is estimated by block-based motion estimation, optical flow and so forth. This papers proposes a new method for motion depth generation using Motion History Image (MHI) and evaluates the feasiblity of the MHI utilization. In the experiments, the proposed method was performed on eight video clips with a variety of motion classes. From a qualitative test on motion depth maps as well as the comparison of the processing time, we validated the feasibility of the proposed method.

The Research of 2 DOF 3D Motion Simulator (2 DOF 3D 운동 시뮬례이터 실험)

  • 김영진;최명환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.260-260
    • /
    • 2000
  • In this work, we have developed a 2 degree of freedom(DOF) motion simulator that can generate the sensation of motion in a 6 DOF space. The motion base has the DOF of roll and pitch, and the purpose of the motion base is to create the sensation of riding a vehicle in a 3D space by controlling the motion base. The dynamics of the mechanism was analysed and the optimal design of the motion base mechanism has been reached. The prototype motion base mechanism was developed and tested. The multi-axis motion controller(MMC) was used to control the two ac servo motors that drive the roll and pitch motion.

  • PDF

A Development of Golf Coaching using Human Motion Analysis (동작분석기법을 활용한 골프코칭시스템 개발)

  • Lim, Seok-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2013
  • For years, many studies have mainly been investigated in a complicated human motion analysis. Recently, many motion analysis equipments have been studied and developed. Therefore, the more complex human movement analyses are possible, we have enabled us to perform more and more complicated human movement analyses. A Three-dimensional(3D) motion analysis on of the several methods is a useful tool for analyzing the human motion analysis. The purpose of this study was to develop the 3D human motion analysis using a kalman filter algorithm and a gyro sensor. The algorithm and sensor were used to human motion analysis with high-speed motion capture. In this study, the developed system will be adapted to facilitate golf swing analysis. Using the developed system, golfers and coaches who do not have advanced biomechanical knowledge can easily be used to their golf swing analysis. Future study is necessary for more practical and efficient area such as other sports industries, 3D game industries, rehabilitation training, etc..

Two-Dimensional Image-Based Respiratory Navigator for Free-Breathing Coronary Magnetic Resonance Angiography

  • Shin, Taehoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.71-77
    • /
    • 2018
  • Purpose: To develop a two-dimensional (2D) image-based respiratory motion correction technique for free-breathing coronary magnetic resonance angiography (MRA). Materials and Methods: The proposed respiratory navigator obtained aliased a 2D sagittal image from under-sampled k-space data and utilized motion correlation between the aliased images. The proposed navigator was incorporated into the conventional coronary MRA sequence including the diaphragm navigator and tested in three healthy subjects. Results: The delineation of major coronary arteries was significantly improved using the proposed 2D motion correction (S/I and A/P) compared to one-dimensional (S/I) correction using the conventional diaphragm navigator. Conclusion: The 2D image-based respiratory navigator was proposed for free-breathing coronary angiography and showed the potential for improving respiratory motion correction compared to the conventional 1D correction.

Particle Simulation for Motion of 2-D Floating Body in Waves (파랑중 2차원 부유체 운동해석을 위한 입자법 시뮬레이션)

  • Park, Jong-Chun;Lee, Byung-Hyuk;Jung, Sung-Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.630-633
    • /
    • 2008
  • A particle method has been developed for analyzing the motion of 2-D floating body in waves. The particle method is based on the MPS(Moving Particle Semi-implicit) method suggested by Koshizuka et al. (1996), and the flow motion coupled with the motion of floating body can be simulated. The wavemaker and wave absorber are installed at the inflow and outflow boundaries in a computational domain, respectively. The motion characteristics of a floating body is investigated numerically under the various computational conditions.

  • PDF