• Title/Summary/Keyword: 2-D LC MS/MS

Search Result 184, Processing Time 0.035 seconds

Development and Validation of an Analytical Method for Quinoxyfen in Agricultural Products using QuEChERS and LC-MS/MS (QuEChERS법 및 LC-MS/MS를 이용한 농산물 중 살균제 Quinoxyfen의 잔류시험법 개발 및 검증)

  • Cho, Sung Min;Do, Jung-Ah;Lee, Han Sol;Park, Ji-Su;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.140-147
    • /
    • 2019
  • An analytical method was developed for the determination of quinoxyfen in agricultural products using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted with 1% acetic acid in acetonitrile and water was removed by liquid-liquid partitioning with $MgSO_4$ (anhydrous magnesium sulfate) and sodium acetate. Dispersive solid-phase extraction (d-SPE) cleanup was carried out using $MgSO_4$, PSA (primary secondary amine), $C_{18}$ (octadecyl) and GCB (graphitized carbon black). The analytes were quantified and confirmed by using LC-MS/MS in positive mode with MRM (multiple reaction monitoring). The matrix-matched calibration curves were constructed using six levels ($0.001-0.25{\mu}g/mL$) and the coefficient of determination ($R^2$) was above 0.99. Recovery results at three concentrations (LOQ, 10 LOQ, and 50 LOQ, n=5) were in the range of 73.5-86.7% with RSDs (relative standard deviations) of less than 8.9%. For inter-laboratory validation, the average recovery was 77.2-95.4% and the CV (coefficient of variation) was below 14.5%. All results were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and Food Safety Evaluation Department guidelines (2016). The proposed analytical method was accurate, effective and sensitive for quinoxyfen determination in agricultural commodities. This study could be useful for the safe management of quinoxyfen residues in agricultural products.

Characterization of RbmD (Glycosyltransferase in Ribostamycin Gene Cluster) through Neomycin Production Reconstituted from the Engineered Streptomyces fradiae BS1

  • Nepal, Keshav Kumar;Oh, Tae-Jin;Subba, Bimala;Yoo, Jin Cheol;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.83-88
    • /
    • 2009
  • Amino acid homology analysis predicted that rbmD, a putative glycosyltransferase from Streptomyces ribosidificus ATCC 21294, has the highest homology with neoD in neomycin biosynthesis. S. fradiae BS1, in which the production of neomycin was abolished, was generated by disruption of the neoD gene in the neomycin producer S. fradiae. The restoration of neomycin by self complementation suggested that there was no polar effect in the mutant. In addition, S. fradiae BS6 was created with complementation by rbmD in S. fradiae BS1, and secondary metabolite analysis by ESI/MS, LC/MS and MS/MS showed the restoration of neomycin production in S. fradiae BS6. These gene inactivation and complementation studies suggested that, like neoD, rbmD functions as a 2-N-acetlyglucosaminyltransferase and demonstrated the potential for the generation of novel aminoglycoside antibiotics using glycosyltransferases in vivo.

Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of ε-Acetamidocaproic Acid in Rat Plasma

  • Kim, Tae Hyun;Choi, Yong Seok;Choi, Young Hee;Kim, Yoon Gyoon
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.203-209
    • /
    • 2013
  • A simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of ${\varepsilon}$-acetamidocaproic acid (AACA), the primary metabolite of zinc acexamate (ZAC), in rat plasma by using normetanephrine as an internal standard. Sample preparation involved protein precipitation using methanol. Separation was achieved on a Gemini-NX $C_{18}$ column ($150mm{\times}2.0mm$, i.d., 3 ${\mu}m$ particle size) using a mixture of 0.1% formic acid-water : acetonitrile (80 : 20, v/v) as the mobile phase at a flow rate of 200 ${\mu}l/min$. Quantification was performed on a triple quadrupole mass spectrometer employing electrospray ionization and operating in multiple reaction monitoring (MRM) and positive ion mode. The total chromatographic run time was 4.0 min, and the calibration curves of AACA were linear over the concentration range of 20~5000 ng/ml in rat plasma. The coefficient of variation and relative error at four QC levels were ranged from 1.0% to 5.8% and from -8.4% to 6.6%, respectively. The present method was successfully applied for estimating the pharmacokinetic parameters of AACA following intravenous or oral administration of ZAC to rats.

Development and Validation of a Robust LC-MS/MS Method for the Simultaneous Quantification of Doxifluridine and its Two Metabolites in Beagle Dog Plasma

  • Baek, In-Hwan;Chae, Jung-Woo;Chae, Han-Jung;Kwon, Kwang-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2235-2241
    • /
    • 2010
  • A reverse-phase HPLC method with detection by mass spectrometry is described for the simultaneous determination of doxifluridine and its two active metabolites, 5-fluorouracil (5-FU) and 5-fluorouridine (5-FUrd), in beagle dog plasma. The optimal chromatographic separation was achieved on a Waters $Xterra^{(R)}$ $C_{18}$ column ($4.6{\times}250\;mm$ i.d., $5\;{\mu}m$ particle size) with a mobile phase of 0.1% formic acid in a mixture of 99% methanol and purified water (99:1, v/v). The developed method was validated in beagle dog plasma with a lowest limit of quantification of $0.05\;{\mu}g/mL$ for both doxifluridine and 5-FU, and $0.2\;{\mu}g/mL$ for 5-FUrd. Doxifluridine and its two metabolites were stable under the analysis conditions, and intra- and inter-day accuracies exceeded 92.87%, with a precision variability ${\leq}11.34%$ for each analyte. Additionally, the method for quantifying doxifluridine and its two metabolites, 5-FU and 5-FUrd, in beagle dog plasma was applied successfully to the analysis of pharmacokinetic samples.

Comparison of Antioxidant Activities of Hydrolysates of Domestic and Imported Skim Milk Powders Treated with Papain

  • Ha, Go Eun;Chang, Oun Ki;Han, Gi Sung;Ham, Jun Sang;Park, Beom-Young;Jeong, Seok-Geun
    • Food Science of Animal Resources
    • /
    • v.35 no.3
    • /
    • pp.360-369
    • /
    • 2015
  • Milk proteins have many potential sequences within their primary structure, each with a specific biological activity. In this study, we compared and investigated the bioactivities of hydrolysates of the domestic (A, B) and imported (C, D) skim milk powders generated using papain digestion. MALDI-TOF analysis revealed that all milk powder proteins were intact, indicating no autolysis. Electrophoretic analysis of hydrolysates showed papain treatment caused degradation of milk proteins into peptides of various size. The antioxidant activity of the hydrolysates, determined using 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and total phenolic contents (TPC) assays, increased with incubation times. In all skim milk powders, the antioxidant activities of hydrolysates were highest following 24 h papain treatment (TPC: A, 196.48 μM GE/L; B, 194.52 μM GE/L; C, 194.76 μM GE/L; D, 163.75 μM GE/L; ABTS: A, 75%; B, 72%; C, 72%; D, 57%). The number of peptide derived from skim milk powders, as determined by LC-MS/MS, was 308 for A, 283 for B, 208 for C, and 135 for D. Hydrolysate A had the highest antioxidant activity and the most potential antioxidant peptides amongst the four skim milk powder hydrolysates. A total of 4 β-lactoglobulin, 4 αs1-casein, and 56 β-casein peptide fragments were identified as potential antioxidant peptides in hydrolysate A by LC-MS/MS. These results suggest that domestic skim milk could have applications in various industries, i.e., in the development of functional foods.

Investigation on Pesticide Residues in Agricultural Products in Domestic Markets Using LC-MS/MS and GC-MS/MS (LC-MS/MS 및 GC-MS/MS를 이용한 국내 유통 농산물 중 잔류농약 실태조사)

  • Ji-Yeon Bae;Da-Young Yun;Nam Suk Kang;Won Jo Choe;Yong-Hyeon Jeong;Gui Hyun Jang;Guiim Moon
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.3
    • /
    • pp.131-139
    • /
    • 2023
  • In this study, we investigated pesticide residue levels in 535 domestically distributed agricultural products in South Korea using multi-residue analysis. Agricultural products from 13 regions, including Seoul, were pretreated using QuEChERS and d-SPE, and subsequently analyzed using LC-MS/MS and GC-MS/MS. Residual pesticides were detected in 288 (53.8%) out of the 535 samples, including 40 of apples, 40 of peppers, 33 of mandarins, 31 of peaches, and 144 other commodities. Furthermore, one sample of Korean cabbage exceeded the permitted maximum residue limit (MRL), diniconazole (0.18 mg/kg), detected at about twice the MRL. In total, 91 types of residual pesticides were detected, including fungicides (42), insecticides (48), and a nematicide. The most frequently detected pesticides were dinotefuran (91), carbendazim (75), tebuconazole (61), and pyraclostrobin (59). Our results showed that continuous monitoring of agricultural products is necessary.

Structure Determination of the Extractives from the Taxus Cuspidata Fruits (주목열매 추출물 구조분석)

  • Park, Se-Yeong;Choi, In-Gyu;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.566-575
    • /
    • 2013
  • The fruits of Taxus cuspidata were collected, divided into seeds and fruits, and extracted with 95% EtOH. The extracts were evaporated under the reduced vacuum pressure, concentrated, then successively fractionated with a series of n-hexane, dichloromethane, ethyl acetate and water on a separatory funnel to get some freeze dried samples. A portion of the EtOAc (arils:1.65 g, seeds:1.04 g) and $H_2O$ (arils:7 g, seeds:10 g) soluble samples were chromatographed on a Sephadex column using MeOH-$H_2O$ (1:1, 1:3, 1:5, v/v), EtOH-hexane (3:1, v/v) mixture and 100% $H_2O$ as eluting solvents to isolate pure compounds from the fractions. The isolates were developed by cellulose TLC using t-BuOH-HOAc-$H_2O$ (TBA; 3:1:1, v/v/v) and 6% aqueous HOAc. Visualization was done under ultraviolet light and by spraying the vanillin-HCl-EtOH reagent (4.8:12:480, v/v/v). followed by heating. The structures of the isolates were characterized by $^1H$- and $^{13}C$-NMR, DEPT, 2D-NMR, LC/MS and EI-MS spectra. In addition to the NMR and MS spectra, acid hydrolysis and permethylation were used to determine the correct structure of the isolated sugar compound. Their structures were elucidated as (+)-catechin (1), (-)-epicatechin (2), (+)-gallocatechin (3), (-)-epigallocatechin (4) and ${\beta}$-D-fructofuranose-($2{\rightarrow}4$)-O-${\beta}$-D-glucopyranose($1{\rightarrow}4$)-O-${\alpha}$-D-glucopyranose ($1{\rightarrow}2$)-O-${\beta}$-D-fructofuranose (5) on the basis of the above experimental evidences.

IN VIVO METABOLISM OF 2-METHYLAMINOETHYL-4,4'-DIMETHOXY-5,6,5',6'-DIMETHYLENEDIOXYBIPHENYL-2'-CARBOXY-2-CARBOXYLATE (DDB-S) BY LC/ESI TANDEM MASS SPECTROMETRY

  • Son, Jung-Hyun;Lee, Jae-Ick;Yang, Ryung;Kim, Dong-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.251.2-251.2
    • /
    • 2002
  • 2-Methylaminoethyl- 4,4' -dimethoxy- 5, 5',6,6' -dimethylenedioxybiphenyl- 2' -carboxy- 2-carboxylate (DDB-S) is a synthetic compound derived from DDB. which is protects liver against carbon tetrachloride-, D-galactosamine-, thioacetamine-, and prednisolone- induced hepatic injury in experimental animals. We assessed the use of liquid chromatography/electrospray iontrap tandem mass spectrometry (LC/MS/MS) method to identify and quantify in vivo metabolites and to measure excretion. (omitted)

  • PDF

Determination of Acetyl-L-carnitine in human plasma by LC-ESI/MS/MS

  • Jang, Moon-Sun;Park, Chang-Hun;Kim, Ho-Hyun;Chang, Kyu-Young;Lee, Ye-Rie;Lee, Hee-Joo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.217.3-217.3
    • /
    • 2003
  • Acetyl-L-carnitine, a physiological component of the L-carnitine family, has been proposed for treating Alzheimer's disease in pharmacological doses. Acetyl-L-carnitine and d3-acetylcarnitine (internal standard) were analyzed by electrospray ionization / tandem mass spectrometry (ESI/MS/MS) after derivatization to their butylesters through treatment with butanolic hydrogen chloride. Acetyl-L-carnitine produced a protonated precursor ion at m/z 260 and a corresponding product ion of m/z 85. Analytes were separated on a Capcell Pak C18 (2.0${\times}$150mm, 5 mm). (omitted)

  • PDF