• Title/Summary/Keyword: 2-D & 3-D Analyses

Search Result 1,111, Processing Time 0.043 seconds

Examination of 3D long-term viscoplastic behaviour of a CFR dam using special material models

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.119-131
    • /
    • 2019
  • Time dependent creep settlements are one of the most important causes of material deteriorations for the huge water structures such as concrete faced rockfill dams (CFRDs). For this reason, performing creep analyses of CFRDs is vital important for monitoring and evaluating of the future and safety of such dams. In this study, it is observed how changes viscoplastic behaviour of a CFR dam depending the time. Ilısu dam that is the longest concrete faced rockfill dam (1775 m) in the world is selected for the three dimensional (3D) analyses. 3D finite difference model of Ilısu dam is modelled using FLAC3D software based on the finite difference method. Two different special creep material models are considered in the numerical analyses. Wipp-creep viscoplastic material model and burger-creep viscoplastic material model were rarely used for the creep analyses of CFRDs in the last are taken into account for the concrete slab and rockfill materials-foundation, respectively. Moreover, interface elements are defined between the concrete slab-rockfill materials and rockfill materials-foundation to provide interaction condition for 3D model. Firstly, dam and foundation are collapsed under its self-weight and static behaviour of the dam is evaluated for the empty reservoir conditions. Then, reservoir water is modelled considering maximum water level of the dam and time-dependent creep analyses are performed for maximum reservoir condition. In this paper, maximum principal stresses, vertical-horizontal displacements and pore pressures that may occur on the dam body surface during 30 years (from 2017 to 2047) are evaluated in detail. According to numerical analyses, empty and maximum reservoir conditions of Ilısu dam are compared with each other in detail. 4 various nodal points are selected under the concrete slab to better seen viscoplastic behaviour changes of the dam and viscoplastic behaviour differences of these points during 30 years are graphically presented. It is clearly seen that horizontal-vertical displacements and principal stresses for maximum reservoir condition are more than the empty reservoir condition of the dam and significant pore pressures are observed during 30 years for maximum reservoir condition. In addition, horizontal-vertical displacements, principal stresses and pore pressures for 4 nodal points obviously increased until a certain time and changes decreased after this time.

Reactions with Maleimides VII: Synthesis of Several New Pyrazolonyl-pyrrolidino[3,4-d]pyrazoline and Pyrazolonyl-pyrolo [3,4-d]pyrazole Derivatives

  • Ghabrial, Sami-S.
    • Archives of Pharmacal Research
    • /
    • v.13 no.4
    • /
    • pp.338-341
    • /
    • 1990
  • Several new pyrazoloyl-pyrrolidino[3, 4-d]pyrazolidines and pyrazolonyl-pyrrolo[3, 4-d] pyrazoles were synthesised via the reaction of N-arylaleimides with the phynylhydrazones of 3-methyl-4-formyl-2-pyrazoline-5-one and 1-phenyl-3-methyl-4-formyl-pyrazolin-5-one and treating of the resulting adducts with chloranil. Structures were based on elemental analyses and spectral data.

  • PDF

Parametric 3D elastic solutions of beams involved in frame structures

  • Bordeu, Felipe;Ghnatios, Chady;Boulze, Daniel;Carles, Beatrice;Sireude, Damien;Leygue, Adrien;Chinesta, Francisco
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.233-248
    • /
    • 2015
  • Frame structures have been traditionally represented as an assembling of components, these last described within the beam theory framework. In the case of frames involving complex components in which classical beam theory could fail, 3D descriptions seem the only valid route for performing accurate enough analyses. In this work we propose a framework for frame structure analyses that proceeds by assembling the condensed parametric rigidity matrices associated with the elementary beams composing the beams involved in the frame structure. This approach allows a macroscopic analysis in which only the condensed degrees of freedom at the elementary beams interfaces are considered, while fine 3D parametric descriptions are retained for local analyses.

Stress Analysis and Life Evaluation of Rotor and Retaining Ring of Generator for fossil power plant (화력용 발전기 회전자 및 리테인 링의 응력해석 및 수명평가)

  • Lee, Ji-Moon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.148-153
    • /
    • 2004
  • This paper represents that parts of a large generator operating in 1000 MW are affected by centrifugal forces due to high-speed rotation in 3600 rpm and 3D FEM Analyses are required to obtained the structural reliability of the generator. From these results, one would know the weakest locations and the stress distributions. The fatigue life is calculated in order to grasp the remaining life of generator. 2D and 3D analyses are performed to calculate stresses of the generator rotor and the retaining ring. From 2D results, we find the SCF at the slot and sub-slot of the rotor. 3D analysis is applied at the end part of generator rotor, which represents complex geometry, and rotor and retaining ring shrink thermally. With these results, designers of rotor and retaining ring can compare with the results of design code and verify the stress distributions of generator rotor and retaining ring, and then calculate the remaining life from the low-cycle fatigue data.

  • PDF

Characteristics Analysis of Reluctance Type Transverse Flux Linear Motor (릴럭턴스형 횡자속 선형전동기의 특성해석)

  • Ryu, Ho-Gil;Lee, Ji-Young;Ha, Kyung-Ho;Hong, Jung-Pyo;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.729-731
    • /
    • 2002
  • This paper deals with 2D and 3D analyses by finite element method for the characteristics of reluctance type transverse flux linear motor. Although 3D analysis is essential because of the characteristics by flux direction. 2D analyses are also used by considering the effective axial length and using the equivalent reluctance 2D model. The thrust, the normal force and the coenergy of the machine are calculated and compared by the results of the three analysis methods.

  • PDF

Pushover Analysis of Bearing Wall System with Macroscopic Models - For Comparisons of 2D and 3D Analysis Modelling (거시적 모델을 이용한 내력벽 시스템의 Pushover 해석 - 2차원과 3차원 해석 모델링의 비교)

  • Lee, Young-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.329-332
    • /
    • 2006
  • To study the effect of the macroscopic TVLEM(Three Vertical Line Element Model) which is developed in 2D, a bearing wall system is selected and 2D and 3D pushover analyses are carried out. In 2D model, the participating width of a flage wall to lateral resistance is modelled based on Paulay's effective width. From the comparisons of roof displacements, 2D model which uses the effective width of flange wall has better prediction and less analysis time than 3D model which has intrinsically the full width of the flange that causes higher stiffness and strength and shorter deformation capacity than 2D model.

  • PDF

A numerical study on the seepage failure by heave in sheeted excavation pits

  • Koltuk, Serdar;Fernandez-Steeger, Tomas M.;Azzam, Rafig
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.513-530
    • /
    • 2015
  • Commonly, the base stability of sheeted excavation pits against seepage failure by heave is evaluated by using two-dimensional groundwater flow models and Terzaghi's failure criterion. The objective of the present study is to investigate the effect of three-dimensional groundwater flow on the heave for sheeted excavation pits with various dimensions. For this purpose, the steady-state groundwater flow analyses are performed by using the finite element program ABAQUS 6.12. It has been shown that, in homogeneous soils depending on the ratio of half of excavation width to embedment depth b/D, the ratio of safety factor obtained from 3D analyses to that obtained from 2D analyses $FS_{(3D)}/FS_{(2D)}$ can reach up to 1.56 and 1.34 for square and circular shaped excavations, respectively. As failure body, both an infinitesimal soil column adjacent to the wall (Baumgart & Davidenkoff's criterion) and a three-dimensional failure body with the width suggested by Terzaghi for two-dimensional cases are used. It has been shown that the ratio of $FS_{(Terzaghi)}/FS_{(Davidenkoff)}$ varies between 0.75 and 0.94 depending on the ratio of b/D. Additionally, the effects of model size, the shape of excavation pit and anisotropic permeability on the heave are studied. Finally, the problem is investigated for excavation pits in stratified soils, and important points are emphasized.

3D seismic assessment of historical stone arch bridges considering effects of normal-shear directions of stiffness parameters between discrete stone elements

  • Cavuslu, Murat
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.207-227
    • /
    • 2022
  • In general, the interaction conditions between the discrete stones are not taken into account by structural engineers during the modeling and analyzing of historical stone bridges. However, many structural damages in the stone bridges occur due to ignoring the interaction conditions between discrete stones. In this study, it is aimed to examine the seismic behavior of a historical stone bridge by considering the interaction stiffness parameters between stone elements. For this purpose, Tokatli historical stone arch bridge was built in 1179 in Karabük-Turkey, is chosen for three-dimensional (3D) seismic analyses. Firstly, the 3D finite-difference model of the Tokatli stone bridge is created using the FLAC3D software. During the modeling processes, the Burger-Creep material model which was not used to examine the seismic behavior of historical stone bridges in the past is utilized. Furthermore, the free-field and quiet non-reflecting boundary conditions are defined to the lateral and bottom boundaries of the bridge. Thanks to these boundary conditions, earthquake waves do not reflect in the 3D model. After each stone element is modeled separately, stiffness elements are defined between the stone elements. Three situations of the stiffness elements are considered in the seismic analyses; a) for only normal direction b) for only shear direction c) for both normal and shear directions. The earthquake analyses of the bridge are performed for these three different situations of the bridge. The far-fault and near-fault conditions of 1989 Loma Prieta earthquake are taken into account during the earthquake analyses. According to the seismic analysis results, the directions of the stiffness parameters seriously changed the earthquake behavior of the Tokatli bridge. Moreover, the most critical stiffness parameter is determined for seismic analyses of historical stone arch bridges.

A Study on the Technology Tendency for Mobile 3D Game Engine (모바일 3D 게임엔진 기술동향 연구)

  • Ko Byeong-Hee;Kim Soon-Gohn
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.19-24
    • /
    • 2005
  • Mobile game market is now developed to 3D game service environment from existing 2D game, low storage capacity, by alteration of platform, demand of related enterprises, and appearing game phone as well as game portal site. This paper analyses keynote of 3D game engine in comparison with examples of mobile 3D game engine, using commonly in the inside of outside of country.

  • PDF

Performance Analysis of Linear Brake by Using Efficient 2-D Model (유효한 2차원 모델을 이용한 리니어 브레이크 성능 해석)

  • Han, Pil-Wan;Chun, Yon-Do;Lee, Ju;Lee, Kwan-Seop
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.601-607
    • /
    • 1998
  • This paper presents the efficient 2-D linear brake analysis model which can compensate the lateral leakage flux by changingng the airgap length and magneto-motive force(MMF). The linkage flux of the 2-D analysis is larger than that of 3-D analysis. This is caused by the assumption in 2-D analysis that geometric and physical values are constant along the perpendicular direction(z) to the analysis region. The equivalent MMF have been calculated from the linkage flux difference between the 2-D and 3-D analyses which are performed at zero velocity. The performances of the linear brake have been analyzed effectively by using the compensated 2-D models without using 3-D FEM.

  • PDF