• Title/Summary/Keyword: 2-Arch tunnel

Search Result 82, Processing Time 0.024 seconds

Stability analysis of a 2 arch tunnel considering excavation sequence (굴착단계를 고려한 2 아치 터널의 안정성 해석)

  • You, Kwang-Ho;Park, Yeon-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.167-174
    • /
    • 2002
  • In this study, a numerical stability analysis was performed for a large tunnel considering excavation sequence. In most cases, stability of a tunnel is analyzed based on the stability of the final excavation stage only. In this study, stability analysis of a tunnel was performed at each excavation stage. In summary, it can be inferred that there is no problem in stability of the tunnel. However, thorough and careful measurements are recommended. Also, it is found that the stability of the tunnel at the 5th excavation stage when the right half of the main tunnel is excavated is rather lower than that of the tunnel at the final excavation stage.

  • PDF

The Characteristics of Stress Distribution on Two-arch Tunnel's Pillar due to Surface Loads in the Discontinuous Rock Mass (불연속성 암반에 위치한 2-아치 터널에서 지표면 하중 작용시 필러에 전달되는 응력 특성)

  • Kim, Hong-Moon;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.65-73
    • /
    • 2009
  • Large scale model tests and numerical analyses are performed to investigate the stress distribution of pillar due to surface loading nearby two-arch tunnel which is constructed in the regularly jointed rocks. It is observed that the influence of discontinuities on the stress distribution in the discontinuous rock mass and the underground stresses induced by surface loading are greater than those of linear elastic theory. Especially, lines of equal stresses are developed to the direction of inclination according to the inclined grade. In cases of discontinuities imbedded in parallel with or vertical to the ground, the pressure bulbs are formed symmetrically, however, the inclined ones result in stress distribution in parallel with and vertical to the planes of discontinuities. Results indicated that stress distribution is seriously affected by the angle of discontinuity. When stresses propagating to the pillar need to be estimated, relative location of surface loading, grade of discontinuous plane, and location of two-arch tunnel should be carefully considered.

Mechanical Behavior of Tunnel Portal in Horizontal Arch Slope (수평 아치형 터널 갱구부 비탈면의 역학적 거동)

  • Yang, Mun-Sang;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.50-61
    • /
    • 2000
  • The ground around the portal of a tunnel is the most typical part showing the 3-dimensional mechanical behavior in the tunnel. The portal slope is constructed at the weathered soft rock-mass, and remains as a potential sliding mass. The slope failure around the tunnel portal may happen drastically and induce the great disaster; hence, for the permanent stability several special techniques are required. To solve this problem, the ground around the tunnel portal may be excavated in the arch shape to develop the arching effect in horizontal direction. With the arch-type portal slope, one can reduce considerably the excavation mass and the damage of environments. This approach has not been attempted yet due to the lack of understanding and the well-defined analyzing method, so the retaining wall type portal is more universal. The 3-dimensional finite element analyses were carried out to prove that the arch type is more advantageous in safety and cost than the right angle type. The influence of the tunnel construction sequence and the strength of the rock-mass on the slope stability was investigated by focusing on the maximum shear strain in the slope, and the yield zone at the tunnel face.

  • PDF

Seismic responses of a metro tunnel in a ground fissure site

  • Liu, Nina;Huang, Qiang-Bing;Fan, Wen;Ma, Yu-Jie;Peng, Jian-Bing
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.775-781
    • /
    • 2018
  • Shake table tests were conducted on scaled tunnel model to investigate the mechanism and effect of seismic loadings on horseshoe scaled tunnel model in ground fissure site. Key technical details of the experimental test were set up, including similarity relations, boundary conditions, sensor layout, modelling methods were presented. Synthetic waves and El Centro waves were adopted as the input earthquake waves. Results measured from hanging wall and foot wall were compared and analyzed. It is found that the seismic loadings increased the subsidence of hanging wall and lead to the appearance and propagation of cracks. The values of acceleration, earth pressure and strain were greater in the hanging wall than those in the foot wall. The tunnel exhibited the greatest earth pressure on right and left arches, however, the earth pressure on the crown of arch is the second largest and the inverted arch has the least earth pressure in the same tunnel section. Therefore, the effect of the hanging wall on the seismic performance of metro tunnel in earth fissure ground should be considered in the seismic design.

Process Variation on Arch-structured Gate Stacked Array 3-D NAND Flash Memory

  • Baek, Myung-Hyun;Kim, Do-Bin;Kim, Seunghyun;Lee, Sang-Ho;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.260-264
    • /
    • 2017
  • Process variation effect on arch-structured gate stacked array (GSTAR) 3-D NAND flash is investigated. In case of arch-structured GSTAR, a shape of the arch channel is depending on an alignment of photo-lithography. Channel width fluctuates according to the channel hole alignment. When a shape of channel exceeds semicircle, channel width becomes longer, increasing drain current. However, electric field concentration on tunnel oxide decreases because less electric flux converges into a larger surface of tunnel oxide. Therefore, program efficiency is dependent on the process variation. Meanwhile, a radius of channel holes near the bottom side become smaller due to an etch slope. It also affects program efficiency as well as channel width. Larger hole radius has an advantage of higher drain current, but causes degradation of program speed.

Stability assessment of unlined tunnels with semicircular arch and straight sides in anisotropic clay

  • Bibhash Kumar;Jagdish P. Sahoo
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • This paper presents stability evaluation of unlined tunnels with semi-circular arch and straight sides (SASS) driven in non-homogeneous and anisotropic undrained clay. Numerical analysis has been conducted based on lower bound finite element limit analysis with second order cone programming under plane strain condition. The solutions will be used for the assessment of stability of unlined semi-circular arch tunnels and tunnels in which semi-circular roof is supported over rectangular/square sections. The stability charts have been generated in terms of a non-dimensional factor considering linear variation in undrained anisotropic strength for normally consolidated and lightly over consolidated clay with depth, and constant undrained anisotropic strength for heavily over-consolidated clay across the depth. The effect of normalized surcharge pressure on ground surface, non-homogeneity and anisotropy of clay, tunnel cover to width ratio and height to width ratio of tunnel on the stability factor and associated zone of shear failure at yielding have been examined and discussed. The geometry of tunnel in terms of shape and size, and non-homogeneity and anisotropy in undrained strength of clay has been observed to influence significantly the stability of unlined SASS tunnels.

A Study on the Three Dimensional Finite Element Analysis for the Tunnel Reinforced by Umbrella Arch Method (Umbrella Arch 공법이 적용된 터널의 3차원 유한요소 해석에 관한 연구)

  • 김창용;배규진;문현구;최용기
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.209-225
    • /
    • 1998
  • Recently, Umbrella Arch Method(UAM), one of the auxiliary techniques for tunnelling, is used to reinforce the ground and improve stability of tunnel face. Because UAM combines the advantages of a modern forepoling system with the grouting injection method, this technique has been applied in subway, road and utility tunnel sites for the last few years in Korea. Also, several research results are reported on the examination of the roles of inserted pipes and grouted materials in UAM. But, because of its empirical design and construction methodology, more qualitative and systematic design sequences are needed. Therefore, above sequences using numerical analysis are proposed and, the effects of some design parameters were studied in this research. In order to acco,mplish these objects, first, the roles of pipe and grouting materials, steel-rib and the others in ground improving mechanism of UAM are clarified. Second, the effects of design parameters are investigated through parametric studies. Design parameters are as follows; 1) ground condition, 2) overburden, 3) geometrical formulation of pipes, 4) grouting region and 5) characteristics of pipes.

  • PDF

A Study on the Evaluation of the Daylighting Performance in the Sound Barrier Tunnel (축소모형을 이용한 방음터널의 자연채광 성능평가에 관한 연구)

  • Kim, Oim-Gon;Choi, Jeong-Min;Park, Chang-Seob;Lee, Kyung-Hee
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • This study aims to evaluate the natural lighting performance in the sound barrier tunnel. Therefore, to evaluate the daylighting performance, the combinations of 3 tunnel roof types which are flat-roof-type(type A), slope-roof-type(type B), arch-roof-type(type C) and 3 window types which are side-window-type(type 1), one-window-roof type(type 2), two-window-roof type(type 3) are evaluated by experimenting small scaled models. In this 9 cases of experiment, illuminance levels of each case are analyzed and evaluated. The conclusion of this study is that slope-roof-type(B) and arch-roof-type(C) is preferable to flat-roof-type(A) and one-window-roof-type(B) and two-window-roof-type(C) is preferable to side-window-type(A) for daylighting in the sound barrier tunnel.

Behavior of arch slab in the shallow tunnel constructed perpendicular to slope by semi-cut-and-cover method (편경사지에 굴착한 반개착식 천층터널에서 아치슬래브의 거동)

  • Yang, Jae-Won;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.157-164
    • /
    • 2010
  • Recently, the number of shallow tunnel construction increases to improve the structural safety and environment-friendliness. In semi-cut-and-cover Method, ground is excavated to the crown arch level and arch slab is set to backfill before the excavation of lower face. In this study, laboratory model tests was performed to clarify the behavior of the arch slab constructed perpendicular to the slope. Results show that Arch slab is affected by perpendicular to the slope and bedrocks. Negative moment at the upper part of the arch slab at hillside and positive moment at the upper part at the other side are generated as perpendicular to the slope increases. Reaction load at the hillside support was larger than that at the other side.

Shear strength behaviors of grouts under the blasting induced vibrations

  • Sagong, Myung;Choi, Il Yoon;Lee, Jun S.;Cho, Chung-sik
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.207-213
    • /
    • 2020
  • Umbrella Arch Method (UAM) often employed in the tunnel construction under poor rock mass conditions in Korea. Insertion of steel pipes at the periphery of the tunnel and infiltration of grouts along the pipes into the rock masses increases tunnel stability. There are two major effects of grouts expected at the tunnel face: 1) increase of face stability by enhancing the frictional resistance of discontinuities and 2) decrease of permeability along the rock masses. Increase of resistance and decrease of permeability requires a certain curing time for the grout. In Korea, we require 24 hours for curing of grout, which means no progress of excavation for 24 hours after infiltration of grouts. This step delays the tunnel construction sequences. To eliminate such inefficiency, we propose MTG (Method for Tunnel construction using Grouting technology), which uses extended length of steel pipes (14 m) compared to conventional pipe roof method (12 m). The merit of MTG is the reduction of curing time. Because of the approximately 2 m extension of the length of steel pipe, blasting can be done after infiltration of grouting. For this paper, we conducted experiments on the shear strength behaviors of grout infilled rock joint with elapsing of curing time and blasting induced vibration. The results show that blasting induced vibration under MTG does not influence the mechanical features of grout material, which indicates no influence on the mechanical behaviors of grout, contributing to the stability of tunnels during excavation. This result indicates that MTG is a cost effective and fast construction method for tunneling in Korea.