• Title/Summary/Keyword: 2-루프 구조

Search Result 204, Processing Time 0.017 seconds

Development of Supportive Device Design for Artificial Hand Based on Virtual Simulation (가상 시뮬레이션을 이용한 의수 보조 장치 디자인 개발)

  • Lee, Ji-Won;Han, Ji-Young;Na, Dong-Kyu;Nah, Ken
    • Journal of Digital Convergence
    • /
    • v.15 no.10
    • /
    • pp.455-465
    • /
    • 2017
  • This study focuses on design development and verification through virtual simulation based on 3D model data in the cloud platform as a method of utilization of engineering technology of design in the fourth industrial revolution era. The goal of research is to develop and examine a design for the needs of the target that has never been met before through virtual simulations that can be conducted in practice. As a research method, we analyzed secondary data to identify the needs of the target, and did literature research for the ergonomic data and target body development stages. In addition, the design development process of this study was shown meaningful result in design, structure, safety, material, durability through loop test of 7 virtual simulations. This study can be applied to the automated process system based on 3D model data in the 4th industrial revolution era and can be used as an element of the cyber physics system for the additional research.

H.264 Deblocking Filter Implementation Method Considering $8\times8$ Block-Based Post-Filtering ($8\times8$ 블록기반의 후처리필터링을 고려한 H.264 블록화 현상 제거부 설계 기법)

  • Kim Sung Deuk;Cho Hong Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.19-26
    • /
    • 2005
  • After various video coding standards such as H.263, MPEG-4, and H.264 have been introduced, there has bun strong need to support the multiple standards with limited resources efficiently. In terms of deblocking Inter which plays an important role in improving visual quality, K264 deblocking filter implementation has different aspects as compared with traditional $8\times8$ block-based post-filter implementation. Analyzing the differences, this paper proposes a H.264 deblocking filter implementation method that supports $8\times8$ block-based post-filtering for the traditional video coding systems. In the proposed implementation method the block boundaries to he filtered are adaptively chosen for $8\times8$ and $4\times4$ block boundary filtering. Since the filtered result is selectively used for motion compensation or not, both loop-filtering and post-filtering can be achieved. A quantization parameter conversion unit that converts H.263 quantization parameters to H.264 quantization parameters is utilized by examining the $8\times8$ block boundary errors based on human visual system. Since the original nature of the H.264 deblocking filter is well expanded to the $8\times8$ block-based post-filter with minor modifications, the proposed implementation method is suitable to implement the deblocking function of the multiple video standards such as H.263, MPEG-4, and K264, efficiently.

PDZ Domain-containing Proteins at Autotypic Junctions in Myelinating Schwann Cells (수초화 슈반세포 autotypic 세포연접의 PDZ 도메인 보유 단백질)

  • Han, Seongjohn;Park, Hyeongbin;Hong, Soomin;Lee, Donghyun;Choi, Maro;Cho, Jeongmok;Urm, Sang-Hwa;Jang, Won Hee;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.101-112
    • /
    • 2015
  • A type of cell junction that is formed between different parts within the same cell is called autotypic cell junction. Autotypic junction proteins form tight junctions found between membrane lamellae of a cell, especially in myelinating glial cells. Some of them have postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains, which interact with the carboxyl (C)-terminal PDZ-binding motif of other proteins. PDZ domains are protein-protein interaction modules that play a role in protein complex assembly. The PDZ domain, which is widespread in bacteria, plants, yeast, metazoans, and Drosophila, allows the assembly of large multi-protein complexes. The multi-protein complexes act in intracellular signal transduction, protein targeting, and membrane polarization. The identified PDZ domain-containing proteins located at autotypic junctions include zonula occludens-1 (ZO-1), ZO-2, pals-1-associated tight junction protein (PATJ), multi-PDZ domain proteins (MUPPs), membrane-associated guanylate kinase inverted 2 (MAGI2), and protease-activated receptor (PAR)-3. PAR-3 interacts with atypical protein kinase C and PAR-6, forming a ternary complex, which plays an important role in the regulation of cell polarity. MAGI2 interacts with ${\alpha}$-amino-3-hydroxyl-5-methyl-4-isoxazole propionate (AMPA) receptor at excitatory synapses. PATJ is detected in paranodal loops associated with claudin-1. On the other hand, MUPP1 is found in mesaxons and Schmidt-Lanterman incisures with claudin-5. ZO-1, ZO-2, and PAR-3 are found at all three sites. Different distributions of PDZ domain-containing proteins affect the development of autotypic junctions. In this review, we will describe PDZ domain-containing proteins at autotypic tight junctions in myelinating Schwann cells and their roles.

Packaging Technology for the Optical Fiber Bragg Grating Multiplexed Sensors (광섬유 브래그 격자 다중화 센서 패키징 기술에 관한 연구)

  • Lee, Sang Mae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.23-29
    • /
    • 2017
  • The packaged optical fiber Bragg grating sensors which were networked by multiplexing the Bragg grating sensors with WDM technology were investigated in application for the structural health monitoring of the marine trestle structure transporting the ship. The optical fiber Bragg grating sensor was packaged in a cylindrical shape made of aluminum tubes. Furthermore, after the packaged optical fiber sensor was inserted in polymeric tube, the epoxy was filled inside the tube so that the sensor has resistance and durability against sea water. The packaged optical fiber sensor component was investigated under 0.2 MPa of hydraulic pressure and was found to be robust. The number and location of Bragg gratings attached at the trestle were determined where the trestle was subject to high displacement obtained by the finite element simulation. Strain of the part in the trestle being subjected to the maximum load was analyzed to be ${\sim}1000{\mu}{\varepsilon}$ and thus shift in Bragg wavelength of the sensor caused by the maximum load of the trestle was found to be ~1,200 pm. According to results of the finite element analysis, the Bragg wavelength spacings of the sensors were determined to have 3~5 nm without overlapping of grating wavelengths between sensors when the trestle was under loads and thus 50 of the grating sensors with each module consisting of 5 sensors could be networked within 150 nm optical window at 1550 nm wavelength of the Bragg wavelength interrogator. Shifts in Bragg wavelength of the 5 packaged optical fiber sensors attached at the mock trestle unit were well interrogated by the grating interrogator which used the optical fiber loop mirror, and the maximum strain rate was measured to be about $235.650{\mu}{\varepsilon}$. The modelling result of the sensor packaging and networking was in good agreements with experimental result each other.