• 제목/요약/키워드: 2 point concentrated load

검색결과 35건 처리시간 0.026초

HMIPv6에서 부하분산 및 매크로 이동성 지원 방안 (A Scheme for Load Distribution and Macro Mobility in Hierarchical Mobile IPv6)

  • 서재권;이경근
    • 대한전자공학회논문지TC
    • /
    • 제44권4호
    • /
    • pp.49-58
    • /
    • 2007
  • IETF(Internet Engineering Task Force)에서는 기존의 Mobile IPv6에서 핸드오버 시 빈번한 바인딩 업데이트로 인해 발생하는 핸드오버 지연과 시그날링 오버헤드등 단점을 보완하기 위하여 HMIPv6(Hierarchical Mobile IPv6)를 제안하였다. HMIPv6는 지역 Home Agent역할을 하는 MAP(Mobility Anchor Point)라는 새로운 개체를 도입하여 MAP 도메인 내에서의 마이크로 이동성을 지원하기 위한 방법이다. 그러나 HMIPv6는 특정 MAP로의 부하집중과 MAP도메인 간의 핸드오버 시에 큰 지연시간은 극복해야 할 문제점으로 지적되고 있다. 본 논문에서는 이러한 문제점을 해결하기 위하여, 멀티레벨 계층 구조에서 상위계층 MAP와 하위계층 MAP가 담당하는 노드들이 공존하는 가상도메인을 설정하여 노드의 이동방향에 따라 2계층 핸드오버 이전에 글로벌 바인딩 업데이트를 실시하여 MAP를 전환하는 방법을 제안한다. 제안방안은 MAP 도메인 간 핸드오버 시 LCoA의 바인딩 업데이트만으로 핸드오버를 완료할 수 있을 뿐만 아니라 가상 도메인에는 상위계층 MAP와 하위계층 MAP가 담당하는 MN들이 공존하기 때문에 특정 MAP로의 부하집중 문제를 해결할 수 있다. 제안방안의 성능을 검증하기 위하여 시뮬레이션을 실행하고 HMIPv6와 비교 분석한다.

5급 복합레진수복물의 응력분포에 관한 3차원 유한요소법적 연구 (Stress distribution of Class V composite resin restorations: A three-dimensional finite element study)

  • 박정길;허복;김성교
    • Restorative Dentistry and Endodontics
    • /
    • 제33권1호
    • /
    • pp.28-38
    • /
    • 2008
  • 본 연구는 3차원 유한요소 분석법적 연구를 통해 쐐기형 비우식성 치경부병소의 복합레진 수복물에서 다른 탄성계수를 가진 복합레진의 수복과 와동의 형태와 응력의 방향에 따른 응력분포의 영향에 대해 알아보고자 하였다. 발거된 상악 제2소구치를 Micro-CT로 스캔한 후 3D-DOCTOR로 3차원유한요소 모형을 제작하였다. 제작된 소구치 모형에 쐐기형 와동과 변형시킨 와동을 형성하고 각 와동을 탄성계수가 서로 다른 혼합형 복합레진 또는 흐름성 복합레진으로 수복하였다. 수복 전, 후 협측교두와 설측교두에 500N의 하중을 가한 후 응력분포를 ANSYS 프로그램을 이용하여 주 응력 분석법으로 평가한 바 다음과 같은 결과를 얻었다. 1. 수복 전 응력은 근심측 백악법랑경계와 와동저 선각부에 집중되었으며 최대응력은 근심협측우각부에서 나타났다. 2. 와동수복 후 와동저 선각의 응력은 현저히 감소했으나 치경부측 변연의 응력은 수복전보다 증가하였다. 3. 쐐기형태의 병소의 수복 시 와동저 선각부는 탄성계수가 높은 재료가 유리하고 치경부측 변연은 탄성계수가 낮은 재료가 유리하였다. 4. 와동저 선각부를 둥글게 변화시키는 것은 압축응력은 감소시키지 않으나 인장응력은 감소시켰다.

상악 소구치 근관치료후 수복방법에 따른 응력 분포의 유한 요소 분석 (FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION ACCORDING TO THE METHOD OF RESTORATION AFTER ROOT CANAL THERAPY)

  • 이정식;이재영;조효선
    • Restorative Dentistry and Endodontics
    • /
    • 제21권1호
    • /
    • pp.339-352
    • /
    • 1996
  • Many dentists have been taken an interest in restoration of severly damaged teeth after endodontic treatment and it is a true that there are lots of studies about it. In these days, although we have used Para-Post, pins, threaded steel post, cast gold post and core, and so on, as a method of restoration frequently, it has been in controversy with the effects of them on the teeth and surrounding periodontal tissue. In this study, we assume that the crown of the upper 1st premolar was severly damaged, and after the root canal therapy, two most common types of restoration were carried out ; 1) coronal-radicular amalgam restoration, 2) after setting up the Para-Post, restore with amalgam core and gold crown. After restoration, in order to present the concentration of stress at internal portion of the tooth and the surrounding periodontal tissue, we doveloped a 2-dimensional finite element model of labiopalatal section, then loaded forces from 2 long perpendicular to the lingual incline of buccal ridge an the middle point, parallel to the long direction axis of tooth at the fossa-were applied. The analyzed results were as follows : 1. Stress of the normal first premolar was concentrated on the most weakest anatomical structure, that is, cervical area, and no stress on the bifurcated area of the canal. 2. Crown restoration after root canal therapy causes large stress concentration on the bifurcated area of the canal. This stress concentration has larger value in case of lateral movement of mandible, and there are decrease in the stress concentration compared with natural tooth. 3. Coronal-radicular amalgam restoration method transports more stress to the tooth structure than restoration using Para-Post. 4. There are more stress concentration around Para-Post in the case of lateral movement, and we have more favo rable result when restored with Para-Post. 5. Generally, stress in the lateral movement is larger than stress in the perpendicular load.

  • PDF

Solution for a semi-infinite plate with radial crack and radial crack emanating from circular hole under bi-axial loading by body force method

  • Manjunath, B.S.;Ramakrishna, D.S.
    • Interaction and multiscale mechanics
    • /
    • 제2권2호
    • /
    • pp.177-187
    • /
    • 2009
  • Machine or structural members subjected to fatigue loading will have a crack initiated during early part of their life. Therefore analysis of members with cracks and other discontinuities is very important. Finite element method has enjoyed widespread use in engineering, but it is not convenient for crack problems as the region very close to crack tip is to be discretized with very fine mesh. However, as the body force method (BFM), requires only the boundary of the discontinuity (crack or hole) to be discretized it is easy versatile technique to analyze such problems. In the present work fundamental solution for concentrated load x + iy acting in the semi-infinite plate at an arbitrary point $z_0=x_0+iy_0$ is considered. These fundamental solutions are in complex form ${\phi}(z)$ and ${\psi}(z)$ (England 1971). These potentials are known as Melan potentials (Ramakrishna 1994). A crack in the semi-infinite plate as shown in Fig. 1 is considered. This crack is divided into number of divisions. By applying pair of body forces on a division, the resultant forces on the remaining 'N'divisions are to be found for which ${\phi}_1(z)$ and ${\psi}_1(z)$ are derived. Body force method is applied to calculate stress intensity factor for crack in semi-infinite plate. Also for the case of crack emanating from circular hole in semi-infinite plate radial stress, hoop stress and shear stress are calculated around the hole and crack. Convergent results are obtained by body force method. These results are compared with FEM results.

3차원 학습 데이터를 이용한 PIC 보의 강성 향상에 대한 연구 (Stiffness Enhancement of Piecewise Integrated Composite Beam using 3D Training Data Set)

  • 지승민;함석우;최진경;전성식
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.394-399
    • /
    • 2021
  • Piecewise Integrated Composite(PIC) 보는 구간 조합 복합재 보로 구간 마다 적층 각도 및 순서를 다르게 적용하여 보의 강성과 강도를 향상시킬 수 있는 복합재료 보의 새로운 개념이다. 본 연구에서는 보의 거동을 고려하기 어려운 2차원 학습 데이터를 대신하여 3차원 학습 데이터가 적용된 머신 러닝 모델을 이용한 PIC 보가 제안되었다. 학습 데이터 및 훈련 데이터 셋(Training Data Set)은 지정된 참조 요소에서 3축 특성 값(Stress Triaxiality Factor)을 추출하여 세 가지 하중 유형(인장, 압축 그리고 전단)으로 분류되어 구성되었고, 이에 따른 하이퍼파라미터(Hyperparameter)가 제안되었다. 이를 통하여 예측된 PIC 보로 유한 요소 해석이 진행되었고 3차원 학습 데이터로 예측된 모델이 처짐 변형량이 감소된 것이 확인되었다. 이를 통해 3차원 학습 데이터를 이용하는 것이 경쟁력있는 것으로 판단되었고 처짐 변형량의 감소로 타당성이 검증되었다.

고강도 철근콘크리트 깊은 보의 전단 강도에 관한 실험평가 (Experimental Evaluation on Shear Strength of High-Strength RC Deep Beams)

  • 이우진;윤승조;김성수
    • 콘크리트학회논문집
    • /
    • 제15권5호
    • /
    • pp.689-696
    • /
    • 2003
  • 최근 ACI 318-02기준 부록 A에 깊은 보의 전단설계에 있어 스트럿-타이 모델을 적용 가능하도록 소개하고 있다. STM은 깊은 보, 개구부가 있는 깊은 보, 코벨, 턱이진 보와 같이 부재의 변형률 분포가 상당히 비선형인 콘크리트 부재의 설계에 광범위하게 사용되고 있다. 본 연구는 고강도콘크리트를 적용한 깊은 보의 각국의 전단강도규준과 전단거동을 평가하고자 실험적 연구로 2점 단순 집중하중을 받는 고강도 RC 깊은 보 5개를 제작하여 파괴 실험을 실시하였다. 또한, 국내 B사의 기계적 정착철물을 사용하여 주인장철근의 양단부에 기계적정착을 적용하였다. 파괴 시 모든 시험체는 가력점과 지지점을 연결하는 주 경사균열이 나타났고, 주인장철근을 기계적 정착한 시험체가 90도 표준갈고리 시험체보다 파괴 시 하중 수행능력이 우수한 것으로 나타났다. 실험결과를 기초로 ACI 318-99 기준, ACI 318-02 부록 A STM, CSA 23.3-94 기준 및 CIRIA Guide-2의 전단설계기준을 비교 평가하였다. ACI 318-99 기준과 ACI 318-02 기준의 스트럿-타이 모델, CIRIA Guide-2는 단순스팬 깊은 보의 극한전단강도 예측 있어 10∼36%정도 낮게 안정적으로 평가하는 것으로 나타났다. ACI 318-99 기준에 의한 전단강도예측값이 표준편차가 가장 낮은 것으로 조사되었다.

임플랜트-지대주의 내측연결 시스템에서 하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소 응력분석 (Finite Element Stress Analysis of Implant Prosthesis of Internal Connection System According to Position and Direction of Load)

  • 장종석;정용태;정재헌
    • 구강회복응용과학지
    • /
    • 제21권1호
    • /
    • pp.1-14
    • /
    • 2005
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis of internal connection system(ITI system) according to position and direction of load, under vertical and inclined loading using finite element analysis (FEA). The finite element model of a synOcta implant and a solid abutment with $8^{\circ}$ internal conical joint used by the ITI implant was constructed. The gold crown for mandibular first molar was made on solid abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric cusp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant under both vertical and oblique loading but stresses in the cancellous bone were low under both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. So, the relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 4. In this internal conical joint, vertical and oblique loads were resisted mainly by the implant-abutment joint at the screw level and by the implant collar. Conclusively, It seems to be more important that how long the distance is from center of rotation of the implant itself to the resultant line of force from occlusal contact (leverage). In a morse taper implant, vertical and oblique loads are resisted mainly by the implant-abutment joint at the screw level and by the implant collar. This type of implant-abutment connection can also distribute forces deeper within the implant and shield the retention screw from excessive loading. Lateral forces are transmitted directly to the walls of the implant and the implant abutment mating bevels, providing greater resistance to interface opening.

도로 침하에 따른 아스팔트 파손에 대한 연구 (A case study for the asphalt damage with the subsidence)

  • 강인원;조상훈;심철우;김동철
    • 대한안전경영과학회지
    • /
    • 제14권3호
    • /
    • pp.175-181
    • /
    • 2012
  • This example was able to focus on the long usage of the pavement that it was merely through the oxidation of the asphalt pavement which it could contact with on the road in the industrial housing complex and correlation regulation of the asphalt subsidence with the load in basic Infra of the configuration. The problem in conjunction with the subsidence (transformation) was interpreted as a problem of the subsidence of each pavement layer to lead the subsidence of the road or the transformation to packaging side asphalt pavement, but the traffic number of times of the heavy vehicle highlights for main problems with the road where is concentrated. In the case of general asphalt paving, it thinks it exposes light, and to study a general phenomenon for the asphalt transformation and a cause for a pavement construction method and the property of material used for pavement and a complement method by the case study at this time of the compound with the heavy vehicle traffic that it can become clear that small success transformation occurs at a point in time when 1-2 years more pass, and a fatigue rift occurs by ultraviolet rays, the oxidation with the contact with the air afterwards, and described beginning to use by the above.

22MnB5 / 탄소섬유 강화 플라스틱으로 제작된 단면 보강 하이브리드 적층판의 강도 보강에 관한 연구 (A study on strength reinforcement of one-sided reinforced hybrid laminates made of 22MnB5 and carbon fiber reinforced plastics)

  • 이환주;전용준;김동언
    • Design & Manufacturing
    • /
    • 제16권2호
    • /
    • pp.1-6
    • /
    • 2022
  • As environmental regulations are strengthened, automobile manufacturers continuously research lightweight structures based on carbon fiber reinforced plastic (CFRP). However, it is difficult to see the effect of strength reinforcement when using a single CFRP material. To improve this, a hybrid laminate in which CFRP is mixed with the existing body structural steel was proposed. In this paper, CFRP patch reinforcement is applied to each compression/tensile action surface of a 22MnB5 metal sheet, and it was evaluated through a 3-point bending experiment. Progressive failure was observed in similar deflection on bending deformation to each one-sided reinforced specimen. After progressive failure, the tensile reinforced specimen was confirmed to separate the damaged CFRP patch and 22MnB5 sheet from the center of the flexure. The compression reinforced specimen didn't separate that CFRP patch and 22MnB5, and the strength reinforcement behavior was confirmed. In the compression reinforced specimen, damaged CFRP patches were observed at the center of flexure during bending deformation. As a result of checking the specimen of the compression reinforcement specimen with an optical microscope, It is confirmed that the damaged CFRP patch and the reinforced CFRP patch overlapped, resulting in a concentrated load. Through the experimental results, the 22MnB5 strength reinforcement characteristics according to the reinforcement position of the CFRP patch were confirmed.

하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소법적 응력분석 (Finite Element Stress Analysis of Implant Prosthesis according to Position and Direction of Load)

  • 배숙진;정재헌;정승미
    • 구강회복응용과학지
    • /
    • 제19권4호
    • /
    • pp.257-268
    • /
    • 2003
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis according to position and direction of load, under vertical and inclined loading using FEA analysis. The finite element model was designed according to standard fixture (4.1mm restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric usp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant in both vertical and oblique loading but stresses in the cancellous bone were low in both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. 4. The relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 5. The magnitude of the stress in the supporting bone, fixture and abutment screw was greater with the outward oblique loading than with the inward oblique loading and was the greatest under loading at the centric cusp in a $30^{\circ}$ outward oblique direction. Conclusively, this study provides evidence that bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. But it seems to be more important that how long is the distance from center of rotation of the implant itself to the resultant line of force from occlusal contact(leverage). The goal of improving implants should be to avoid bending of the implant.