Ham, Dong Hun;Chung, Woo Chull;Choi, Byeong Yeol;Choi, Jong Eun
Journal of the Korean Orthopaedic Association
/
v.55
no.2
/
pp.143-153
/
2020
Purpose: To evaluate the timing of the improvement in surgical skills of the direct anterior approach for hip arthroplasty through an analysis of the clinical features and learning curve in 58 cases. Materials and Methods: From November 2016 to November 2018, 58 patients, who were divided into an early half and late half, and underwent hip arthroplasty by the direct anterior approach, were enrolled in this retrospective study. The operation time and complications (fracture, lateral femoral cutaneous nerve injury, heterotopic ossification, infection, and dislocation) were assessed using a chi-square test, paired t-test, and cumulative sum (CUSUM) test. Results: The mean operation times in total hip arthroplasty (26 cases) and bipolar hemi-arthroplasty were 132.1 minutes and 79.7 minutes, respectively, demonstrating a significant difference between the two groups. CUSUM analysis based on the results revealed breakthrough points of the operation time, decreasing to less than the mean operation time because of the 16th case in total hip arthroplasty and 14th case in bipolar hemiarthroplasty. Complications were encountered in the early phase and late phase: five cases of fractures in the early phase, no case in the late phase; eight and two cases of lateral femoral cutaneous nerve injury, respectively; three and two cases of heterotopic ossification, respectively; and one case of dislocation, one case of infection and three cases of others in the early phase. The CUSUM chart for the fracture rate during operation in the early phase revealed the following: five cases fracture (17.2%) in the early phase and no case in the late phase (0%). This highlights the learning curve and the need for monitoring the inadequacy of operation based on the complications. Conclusion: Hip arthroplasty performed by the direct anterior approach based on an anatomical understanding makes it difficult to observe the surgical field and requires a learning curve of at least 30 cases.
Journal of the military operations research society of Korea
/
v.36
no.2
/
pp.1-10
/
2010
Learning rate is generally applied to estimate an appropriate production labor cost. Learning effect is obtained from repetitive work during the production period under 3 assumptions ; homogeneous production, same producer, quantity measure in continuous unit. However, production breaks occur frequently in Korean defense industry environment because of budget constraint and annual requirements. In this case previous learning effect can not be applied due to learning loss. This paper proposed the application of learning rate when a production break occurs in Korea defense industry. To obtain a learning loss, we surveyed various learning loss factors for different production breaks(6, 12, 18 months) from 4 defense industry companies. Then, we estimate the first unit labor hours in re-production phase after production break using Anderlohr method and Retrograde method with the result of the survey. This work is the first attempt to show a method which defines and evaluates the learning loss factors in Korean defense industry environment.
Lee, Yu ra;Kim, Soo Hyung;Kim, Young Chul;Na, In Seop
Smart Media Journal
/
v.5
no.3
/
pp.35-41
/
2016
In this paper, we propose hand-gesture signal recognition based on EPS(Electronic Potential Sensor) using Deep learning model. Extracted signals which from Electronic field based sensor, EPS have much of the noise, so it must remove in pre-processing. After the noise are removed with filter using frequency feature, the signals are reconstructed with dimensional transformation to overcome limit which have just one-dimension feature with voltage value for using convolution operation. Then, the reconstructed signal data is finally classified and recognized using multiple learning layers model based on deep learning. Since the statistical model based on probability is sensitive to initial parameters, the result can change after training in modeling phase. Deep learning model can overcome this problem because of several layers in training phase. In experiment, we used two different deep learning structures, Convolutional neural networks and Recurrent Neural Network and compared with statistical model algorithm with four kinds of gestures. The recognition result of method using convolutional neural network is better than other algorithms in EPS gesture signal recognition.
Ali Bagheri;Mohammadreza Mosalmanyazdi;Hasanali Mosalmanyazdi
Structural Engineering and Mechanics
/
v.91
no.2
/
pp.163-175
/
2024
The objective of this research is to improve public safety in civil engineering by recognizing fractures in concrete structures quickly and correctly. The study offers a new crack detection method based on advanced image processing and machine learning techniques, specifically transfer learning with convolutional neural networks (CNNs). Four pre-trained models (VGG16, AlexNet, ResNet18, and DenseNet161) were fine-tuned to detect fractures in concrete surfaces. These models constantly produced accuracy rates greater than 80%, showing their ability to automate fracture identification and potentially reduce structural failure costs. Furthermore, the study expands its scope beyond crack detection to identify concrete health, using a dataset with a wide range of surface defects and anomalies including cracks. Notably, using VGG16, which was chosen as the most effective network architecture from the first phase, the study achieves excellent accuracy in classifying concrete health, demonstrating the model's satisfactorily performance even in more complex scenarios.
Objective: The purpose of this study was to examine the effect of the Spaced Retrieval Training (SRT) with Errorless learning on the elderly with Mild Cognitive Impairment (MCI)'s memory, Instrumental Activities Daily Living, Depression symptom. Methods: A single subject experimental research with ABA design was conducted in this study on the 78-years-old person who was enrolled in day-care center. The total experimental sessions were 16 which composed of 3 sessions for baseline, 10 sessions for intervention and 3 sessions for second baseline. K-Auditory Verbal Learning Test (K-AVLT) was measured for the memory each session. For the measurement of cognitive function, IADL, depression Symptom, Korean version of Montreal Cognitive Assessment (MoCA-K), Philadelphia Geriatric Center Instrumental Activities Daily Living (PGC IADL), Geriatric Depression Scale Korean Version (GDS-K) was measured at pre-post test. Results: Memory at the phase B was improved than Phase A. At the phase B, the scores trend was ascending, but after the intervention at the phase A', the scores trend was descending. The scores of MoCA-K were improved, PGC IADL were maintained, GDS-K were decreased. Conclusion: This results support the evidence of the SRT with EL on the elderly with MCI in the clinical setting. In the future, the correlation researches about MCI's memory and other functional factors will be needed for effective occupational therapy service.
Flipped classroom has used widely in university in that its unique structure can facilitate learners' higher-thinking skills and promote competencies. Learners are expected to extend knowledge through performing online and offline, but they have difficulty in understanding their roles and specific behaviors to achieve the learning goals in the flipped learning. Therefore, a guidance for students has been required to support learners' mastery learning. The purpose of this study is to identify successful learners' characteristics in terms of "competency". For this, three-phased competency modeling was employed. In Phase I, Behavioral Event Interviews were conducted with eight learners of the flipped classroom. In Phase II for identifying competencies and developing a competency model, the data was coded, followed by testing reliability of the coding. Based on the meaning codes, competencies and behavioral indexes were developed. The final competencies consist of learning orientation, learning management, feedback seeking, peer interaction, and knowledge extension. In Phase III, validation of the competency model was conducted by explanatory factor analysis. As last, competencies were aligned by the two-phase of the flipped classroom. The finding will be used as the guidance for the learners and instructors in the flipped classroom.
Several lines of evidence indicate that adenosine $A_{2A}$ agonist disrupts spatial working memory. However, it is unclear which stages of learning and memory are affected by the stimulation of adenosine $A_{2A}$ receptor. To clarify these points, we employed CV-1808 as adenosine $A_{2A}$ agonist and investigated its effects on acquisition, consolidation, and retrieval phases of learning and memory using passive avoidance and the Morris water maze tasks. During the acquisition phase, CV-1808 (2-phenylaminoadenosine, 1 and 2 mg/kg, i.p.) decreased the latency time in passive avoidance task and the mean savings in the Morris water maze task, respectively. During the consolidation and retrieval phase tests, CV-1808 did not exhibited any effects on latency time in passive avoidance task and the mean savings in the Morris water maze task. These results suggest that CV-1808 as an adenosine $A_{2A}$ agonist impairs memory acquisition but not consolidation or retrieval.
It is a major objective for the management and operation of water resources system to forecast streamflows. The applicability of artificial neural network model to hydrologic system is analyzed and the performance is compared by statistical method with observed. Multi-layered perception was used to model rainfall-runoff process at Pyung Chang River Basin in Korea. The neural network model has the function of learning the process which can be trained with the error backpropagation (EBP) algorithm in two phases; (1) learning phase permits to find the best parameters(weight matrix) between input and output. (2) adaptive phase use the EBP algorithm in order to learn from the provided data. The generalization results have been obtained on forecasting the daily and hourly streamflows by assuming them with the structure of ARMA model. The results show validities in applying to hydrologic forecasting system.
Lee, Yujin;Capraro, Robert M.;Capraro, Mary M.;Bicer, Ali
Research in Mathematical Education
/
v.25
no.1
/
pp.21-43
/
2022
Investigating the relationship between intrinsic and extrinsic motivation and their effects on affective mathematics engagement in a cultural context is critical for determining which types of motivation promote affective mathematics engagement and the relationship with cultural affordance. The investigation in the current study is comprised of two dependent studies. The results from Phase 1 indicate that attitude and emotion are better explained by extrinsic motivation, while self-acknowledgment and value are better explained by intrinsic motivation. The results of Phase 2 indicate that the Korean sample has greater extrinsic motivation, attitude, and emotion, while the U.S. sample has greater intrinsic motivation, self-acknowledgment, and value. The key outcome for this research is that disentangling cultural affordance from the emotional and cognitive structures is impossible.
The Journal of Korean Institute of Communications and Information Sciences
/
v.16
no.10
/
pp.934-940
/
1991
A modified quantizing method is introduced to teach single layer learning algorithm, which is implemented optically. The proposed optical system consists of input masks, holographic diffraction grating. LCD and CCD camera. The 2 dimensional interconnections between input neurons and output neurons are realized using holographic phase grating, which is fabricated for equal intensity distribution of diffraction orders. The two gray levels of LCD act as binary weights for each interconnection. The weights are compensated according to the learning algorithm in which the amount of weights to be compensated is determined by comparing the output patterns with target patterns. The learning process is iterated until the predetermined conditions are satisfied. Optical experiments are performed for two learning rates, 0.5 and 0.9 and the experimental results show that the proposed system is useful for optical neural networks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.