• 제목/요약/키워드: 2 Wheel Robot

검색결과 98건 처리시간 0.03초

축방향 충격흡수 향상을 위한 소형구형 투척 로봇구조 설계 (Design of a Miniature Sphere Type Throwing Robot with an Axial Direction Shock Absorption Mechanism)

  • 정원석;김영근;김수현
    • 제어로봇시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.361-366
    • /
    • 2015
  • In this paper, we propose a novel surveillance throwing robot which is compact, light-weight and has an efficient shock absorption mechanism. The throwing robot is designed in a spherical shape to be easily grabbed by a hand for throwing. Also, a motor-wheel linking mechanism is designed to be robustly protected from shocks upon landing. The proposed robot has a weight of 2.2kg and the diameter of its wheels is 150 mm. Through the field experiments, the designed robot is validated to withstand higher than 13Ns of impulse.

교량 케이블 점검용 이동 로봇 개발 (Development of a Climbing Robot for Inspection of Bridge Cable)

  • 김호문;조경호;진영훈;;최혁렬
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.83-91
    • /
    • 2012
  • In this paper, we propose a cable climbing robot which can climb up and down the cables in the bridges. The robot mechanism consists of three parts: a wheel based driving mechanism, adhesion mechanism, and safe landing mechanism. The wheel based driving mechanism is driven by tooth clutches and motors. The adhesion mechanism plays the role of maintaining adhesion force by a combination of pantograph, ball screw, and springs even when the power is lost. The safe landing mechanism is developed for guaranteeing the safety of the robot during operations on cables. It can make the robot fall down with reduced speed by dissipating the gravitational forces. The robot mechanism is designed and manufactured for validating its effectiveness.

뉴튼의 평행법칙을 이용한 차동구동 이동로봇의 동력학 모델링 구현 (Realization of Differential Drive Wheeled Mobile Robot Dynamic Modeling Using Newton's Equilibrium law)

  • 정용욱;정구섭
    • 로봇학회논문지
    • /
    • 제5권4호
    • /
    • pp.349-358
    • /
    • 2010
  • We presents a dynamic modeling of 4-wheel 2-DOF. WMR. The classic dynamic model utilizes a greatly simplified wheel motion representation and using of a simplified dynamic model confronts with a problem for accurate position control of wheeled mobile robot. In this paper, we treats the dynamic model for describes relationship between the wheel actuator force/torque and WMR motion through the use of Newton's equilibrium laws. To calculate the WMR position in real time, we introduced the Dead-Reckoning algorithms and the simulation result show that the proposed dynamic model is useful. We can be easily extend the proposed WMR model to mobile robot of similar type and this type of methodology is useful to analyze, design and control any kinds of rolling robots.

바퀴구름운동을 고려한 역진자 로봇의 주행 (Driving of Inverted Pendulum Robot Using Wheel Rolling Motion)

  • 이준호;박치성;황종명;이장명
    • 로봇학회논문지
    • /
    • 제5권2호
    • /
    • pp.110-119
    • /
    • 2010
  • This paper aims to add the autonomous driving capability to the inverted pendulum system which maintains the inverted pendulum upright stably. For the autonomous driving from the starting position to the goal position, the motion control algorithm is proposed based on the dynamics of the inverted pendulum robot. To derive the dynamic model of the inverted pendulum robot, a three dimensional robot coordinate is defined and the velocity jacobian is newly derived. With the analysis of the wheel rolling motion, the dynamics of inverted pendulum robot are derived and used for the motion control algorithm. To maintain the balance of the inverted pendulum, the autonomous driving strategy is derived step by step considering the acceleration, constant velocity and deceleration states simultaneously. The driving experiments of inverted pendulum robot are performed while maintaining the balance of the inverted pendulum. For reading the positions of the inverted pendulum and wheels, only the encoders are utilized to make the system cheap and reliable. Even though the derived dynamics works for the slanted surface, the experiments are carried out in the standardized flat ground using the inverted pendulum robot in this paper. The experimental data for the wheel rolling and inverted pendulum motions are demonstrated for the straight line motion from a start position to the goal position.

등반능력향상을 위한 이륜 역진자 로봇의 최적 ARS 제어 (Optimal ARS Control of an Inverted Pendulum Robot for Climbing Ability Improvement)

  • 권영국;이장명
    • 로봇학회논문지
    • /
    • 제6권2호
    • /
    • pp.108-117
    • /
    • 2011
  • This paper proposes an optimal ARS control of a two-wheel mobile inverted pendulum robot. Conventional researches are highly concentrated on the robust control of a mobile inverted pendulum on the flat ground, $i.e.$, mostly focus on the compensation of gyroscope signals. This newly proposed algorithm deals with a climbing control of a slanted surface based on the dynamic modeling using the conventional structure. During the climbing control of the robot, unexpected disturbance forces are essentially caused by the irregular contact force which comes from the irregular contact angle between the wheel and the terrain. The disturbances have effects on the optimal posture of the mobile robot to compensate the slanted angle. Therefore the dynamics equations through physical interpretation are derived for the selection of optimum climbing posture through ARS. Also using the ultrasonic sensor the slope information is obtained to compensate for the force of gravity. The control inputs are dynamically adjusted to climb up the slanted surface effectively. The proposed algorithm is demonstrated through the real experiments.

메카넘휠 성능개선을 위한 일체형 설계 및 구조해석 (Unified-type Design and Structural Analysis for Mecanum Wheel Performance Improvement)

  • 정재웅;권순재;주백석;박준영
    • 한국기계가공학회지
    • /
    • 제13권2호
    • /
    • pp.117-123
    • /
    • 2014
  • In order to provide a mobile robot with omnidirectionality, various types of omnidirectional wheels have been developed. This paper deals with an improved design and structural analysis of a Mecanum wheel, which is the type of omnidirectional wheels most commonly used in industrial fields. A geometric formulation for manufacturingthe Mecanum wheel is presented and two types of Mecanum wheels are designed and fabricated in this research. While conventional assembled-type Mecanum wheels have a complicated structure and the high possibility of mutual interference between sub-components, a unified type of Mecanum wheel reduces the number of sub-components and increases the degree of structural rigidity. The stress and strain properties of the two designs are compared to confirm the quantitative improvement of the new design by a commercial structural analysis tool. The analysis results show that the unified type of Mecanum wheel has properties superior to the assembled type of Mecanum wheel in terms of its ability to reduce interference.

A Study on a Power Transmission Line Mobile Robot for Bundled Conductor Navigation

  • Seok, Kwang-Ho;Kim, Yoon Sang
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.155-161
    • /
    • 2019
  • We introduces a mobile robot that can navigate on a power transmission line arranged in bundled conductors. The designs of the proposed robot are performed for navigation on bundled conductors, and the navigation method for bundled conductors and obstacle avoidance are presented. The robot consists of 13 degrees of freedom (DOF) with a symmetrical structure for the left and right parts, including the four wheel joints. The navigation method is designed using a combination of three motion primitives such as linear motion of counterbalancing box, linear motion of robot arm, and rotational motion of wheel part. To examine the performance of the proposed robot, navigation simulations are conducted using $ADAMS^{TM}$. The robot navigations were simulated on obstacle environments that consisted of two- and four-conductor bundles. Based on the simulation results, the performance of the proposed robot was reviewed through the analysis of the trajectories of end-effectors. We confirmed that the proposed robot was capable of achieving optimal navigation on bundled conductors that included obstacles.

다중이동로봇의 동적 모델링 및 구동성능 분석을 통한 새로운 바퀴 배치 제안 (A New Wheel Arrangement by Dynamic Modeling and Driving Performance Analysis of Omni-directional Robot)

  • 신상재;김한;김성한;주종남
    • 한국정밀공학회지
    • /
    • 제30권1호
    • /
    • pp.18-23
    • /
    • 2013
  • Omni-directional robot is a typical holonomic constraint robot that has three degrees of freedom movement in 2D plane. In this study, a new omni-directional robot whose wheels are arranged in radial directions was proposed to improve driving performance of the robot. Unlike a general omni-directional robot whose wheels were arranged in a circumferential direction, moments do not arises in the proposed robot when the robot travels in a straight line. To analyze driving performance, dynamic modeling of the omni-directional robot, which considers friction and slip, was carried out. By friction measurement experiments, the relationship between dynamic friction coefficient and relative velocity was derived. Dynamic friction coefficient according to the angle difference between robot travel direction and wheel rotation direction was also obtained. By applying these results to the dynamic model, driving performance of the robot was calculated. As a result, the proposed robot was 1.5 times faster than the general robot.

원전시설용 이동로보트의 장애물 승월에 관한 연구 (A mobile robot for going over obstacles in nuclear facilities)

  • 김병수;김창희;김승호;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.166-171
    • /
    • 1989
  • In the view of the fact that mobile robot in nuclear facilities should be able to turn in narrow space, go over obstacles, and climb stairs for the inspection and maintenance, a robot, named as KAEROT, is developed. It adopts 2DWIS (2-Driving Wheels, 1-Steering) and has three planetary wheels that are composed of two star-like arms and three small wheels. The experiments were carried out in two locomotion methods; (1) by controlling the rear wheel speed as a function of steering angle, and (2) by using inclination and stair-detection sensor to control the position of planetary and small wheel. The developed robot moved on the floor with stability. Results from the experiment on the rectangular obstacle as well as the computer simulation showed a feasibility on the stairs.

  • PDF

심층 강화학습을 이용한 휠-다리 로봇의 3차원 장애물극복 고속 모션 계획 방법 (Fast Motion Planning of Wheel-legged Robot for Crossing 3D Obstacles using Deep Reinforcement Learning)

  • 정순규;원문철
    • 로봇학회논문지
    • /
    • 제18권2호
    • /
    • pp.143-154
    • /
    • 2023
  • In this study, a fast motion planning method for the swing motion of a 6x6 wheel-legged robot to traverse large obstacles and gaps is proposed. The motion planning method presented in the previous paper, which was based on trajectory optimization, took up to tens of seconds and was limited to two-dimensional, structured vertical obstacles and trenches. A deep neural network based on one-dimensional Convolutional Neural Network (CNN) is introduced to generate keyframes, which are then used to represent smooth reference commands for the six leg angles along the robot's path. The network is initially trained using the behavioral cloning method with a dataset gathered from previous simulation results of the trajectory optimization. Its performance is then improved through reinforcement learning, using a one-step REINFORCE algorithm. The trained model has increased the speed of motion planning by up to 820 times and improved the success rates of obstacle crossing under harsh conditions, such as low friction and high roughness.