• Title/Summary/Keyword: 2 Dimensional Analysis

Search Result 5,823, Processing Time 0.037 seconds

Structural Analysis for the Conceptual Design of a High Level Radioactive Waste Repository in a Deep Deposit (심지층 고준위 방사성 폐기물 처분장의 개념설계를 위한 구조적 안정성 해석)

  • 권상기;장근무;강철형
    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.102-113
    • /
    • 1999
  • Two-dimensional and three-dimensional DEM programs, UDEC and 3DEC, were used to investigate the mechanical stability of the conceptual design of deposition drift and deposition holes constructed in a crystalline rock mass. From the simulations, the influence of discontinuities, the number of deposition holes, and deposition hole interval on the stability of deposition drift and deposition holes could be determined. From the two-dimensional and three-dimensional analysis. it was concluded that three-dimensional analysis should be carried 7ut fur deriving reliable conclusions. Even though the deposition hole interval changed from 8 m to 3 m, which did not damage the mechanical stability of the deposition drift.

  • PDF

Model-Ship Correlation Study on the Powering Performance for a Large Container Carrier

  • Hwangbo, S.M.;Go, S.C.
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.4
    • /
    • pp.44-50
    • /
    • 2001
  • Large container carriers are suffering from lack of knowledge on reliable correlation allowances between model tests and full-scale trials, especially at fully loaded condition, Careful full-scale sea trial with a full loading of containers both in holds and on decks was carried out to clarify it. Model test results were analyzed by different methods but with the same measuring data to figure out appropriated correlations factors for each analysis methods, Even if it is no doubt that model test technique is one of the most reliable tool to predict full scale powering performance, its assumptions and simplifications which have been applied on the course of data manipulation and analysis need a feedback from sea trial data for a fine tuning, so called correlation factor. It can be stated that the best correlation allowances at fully loaded condition for both 2-dimensional and 3-dimensional analysis methods are fecund through the careful sea trial results and relevant study on the large size container carriers.

  • PDF

Applications of response dimension reduction in large p-small n problems

  • Minjee Kim;Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.2
    • /
    • pp.191-202
    • /
    • 2024
  • The goal of this paper is to show how multivariate regression analysis with high-dimensional responses is facilitated by the response dimension reduction. Multivariate regression, characterized by multi-dimensional response variables, is increasingly prevalent across diverse fields such as repeated measures, longitudinal studies, and functional data analysis. One of the key challenges in analyzing such data is managing the response dimensions, which can complicate the analysis due to an exponential increase in the number of parameters. Although response dimension reduction methods are developed, there is no practically useful illustration for various types of data such as so-called large p-small n data. This paper aims to fill this gap by showcasing how response dimension reduction can enhance the analysis of high-dimensional response data, thereby providing significant assistance to statistical practitioners and contributing to advancements in multiple scientific domains.

Evaluation of Safety by Structural Analysis of Traditional Wooden Building (전통 목조 건축물의 구조해석에 의한 안전성 평가)

  • Jo, Sung-San;Kim, Hyong-Kee;Park, Bok-Man
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.149-158
    • /
    • 2005
  • In order to grasp and evaluate the characteristics and the safety of traditional wooden building, we select one of the representative traditional wooden building, Buseoksa Muryangsujeon in this study. After the two and three-dimensional structural analysis of this building are performed, the results are compared and analyzed. Following main conclusion are obtained: 1) By comparison between the results of two and three-dimensional structural analysis, they show that the exterior members of this building tend to transfer more load in the three-dimensional analysis. 2) The result of three-dimensional structural analysis shows that the every member stress of Buseoksa Muryangsujeon except Chobang and Jangyon is below allowable stress. 3) For exact modelling of joints of members in traditional wooden building such as Gongpo, it is necessary to accumulate and analyze the technical data through structural test and systematic analysis study.

Measurement of 2-Dimensional Dopant Profiles by Electron Holography and Scanning Capacitance Microscopy Methods (일렉트론홀로그래피와 주사정전용량현미경 기술을 이용한 2차원 도펀트 프로파일의 측정)

  • Park, Kyoung-Woo;Shaislamov, Ulugbek;Hyun, Moon Seop;Yoo, Jung Ho;Yang, Jun-Mo;Yoon, Soon-Gil
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.311-315
    • /
    • 2009
  • 2-dimensional (2D) dopant profiling in semiconductor device was carried out by electron holography and scanning capacitance microscopy methods with the same multi-layered p-n junction sample. The dopant profiles obtained from two methods are in good agreement with each other. It demonstrates that reliability of dopant profile measurement can be increased through precise comparison of 2D profiles obtained from various techniques.

A method for underwater image analysis using bi-dimensional empirical mode decomposition technique

  • Liu, Bo;Lin, Yan
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Recent developments in underwater image recognition methods have received large attention by the ocean engineering researchers. In this paper, an improved bi-dimensional empirical mode decomposition (BEMD) approach is employed to decompose the given underwater image into intrinsic mode functions (IMFs) and residual. We developed a joint algorithm based on BEMD and Canny operator to extract multi-pixel edge features at multiple scales in IMFs sub-images. So the multiple pixel edge extraction is an advantage of our approach; the other contribution of this method is the realization of the bi-dimensional sifting process, which is realized utilizing regional-based operators to detect local extreme points and constructing radial basis function for curve surface interpolation. The performance of the multi-pixel edge extraction algorithm for processing underwater image is demonstrated in the contrast experiment with both the proposed method and the phase congruency edge detection.

2-Dimensional Analysis of Full Rake TGV-K on Crashworthiness (고속전철 TGV-K 전체 차량의 2차원 충돌해석)

  • 구정서;송달호
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.545-552
    • /
    • 1998
  • A study on collision analysis of TGV-K using a 2-dimensional model is described to evaluate its crashworthiness. Two-dimensional analysis gives good information on overriding behaviour and impact forces applied to interconnecting devices such as side buffers, ball & socket joints, hooks, pins, and fingers. Since the headstock of TGV-K is not designed in a crashworthy point of view, its conceptual design fur KHST(Korean High Speed Train), under development, is suggested to improve crashworthiness. The suggested design, which adopts an energy absorber and a crashworthy headstock, is compared with the conventional headstock on dynamic behaviour to the vertical direction under the accident scenario of SNCF (collision at 110km/h against a movable rigid mass of 15 ton). It is concluded that the design modification make little difference in vertical motion. To evaluate validation of the 2-dimensional model, the results fur longitudinal motion is compared with those of 1-dimemsional one. It is found that the two results are in good agreements.

  • PDF

An Analytical Study on the Determination of the Lowest Improvement Depth of Deep Mixing Method (심층혼합공법의 최저 개량 심도 결정에 관한 해석적 연구)

  • Park, Choon-Sik;Song, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Design techniques for the deep mixing method, one of the soft ground improvement methods, include two ways to interpret the ground as composite ground and pile ground. However, since comparative studies on these two approaches are insufficient, it is difficult to clearly define the analysis criteria in the design. In this study, two-dimensional and three-dimensional analyses have been performed with different conditions. The three conditions, the embankment height, depth of soft ground, and replacement ratio of reinforcement zones were varied and the analysis was performed on the basis of the assumption of composite ground and pile ground for each condition. As a result, the minimum depth of improvement in the two-dimensional analysis was deeper by 6.85~9.08% than in the three-dimensional analysis. The pile ground analysis showed that the depth of improvement was deeper by 12.22~14.45% than the composite ground analysis. Based on these results, it is concluded that for more accurate design, three-dimensional analysis should be performed rather than two-dimensional analysis. also, it is judged that necessary to analyze the ground as composite ground for economical design, and as the pile ground analysis for stable design.

3-Dimensional Fatigue Life Evaluation for Major Components of Nuclear Power Plant (원전 주요기기의 3차원 피로수명 평가)

  • Ahn, Min-Yong;Bae, Sung-Ryul;Park, Young-Jae;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Jhung, Myung-Jo;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.102-107
    • /
    • 2004
  • In general, major components of nuclear power plant have been evaluated based on 2-dimensional design codes conservatively. However, more exact assessment is necessary for continued operation beyond the design life. In this paper, 3-dimensional stress and fatigue analyses reflecting full geometry and monitored operating condition of reactor pressure vessel have been carried out. The analyses results showed that conservatism of current 2-dimensional evaluation based on design transient. Therefore, it is anticipated that the schemes developed from this research such as 3-dimensional finite element modeling, stress analysis and fatigue analysis related techniques can be utilized as fundamental tools for exact lifetime evaluation and license renewal of major nuclear components.

  • PDF

Characterization of Two-Dimensional Transition Metal Dichalcogenides in the Scanning Electron Microscope Using Energy Dispersive X-ray Spectrometry, Electron Backscatter Diffraction, and Atomic Force Microscopy

  • Lang, Christian;Hiscock, Matthew;Larsen, Kim;Moffat, Jonathan;Sundaram, Ravi
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.131-134
    • /
    • 2015
  • Here we show how by processing energy dispersive X-ray spectrometry (EDS) data obtained using highly sensitive, new generation EDS detectors in the AZtec LayerProbe software we can obtain data of sufficiently high quality to non-destructively measure the number of layers in two-dimensional (2D) $MoS_2$ and $MoS_2/WSe_2$ and thereby enable the characterization of working devices based on 2D materials. We compare the thickness measurements with EDS to results from atomic force microscopy measurements. We also show how we can use electron backscatter diffraction (EBSD) to address fabrication challenges of 2D materials. Results from EBSD analysis of individual flakes of exfoliated $MoS_2$ obtained using the Nordlys Nano detector are shown to aid a better understanding of the exfoliation process which is still widely used to produce 2D materials for research purposes.