• Title/Summary/Keyword: 2축 굽힘강도

Search Result 15, Processing Time 0.02 seconds

Development of Lightweight Auger Planting for Strengthen of Screw Shaft (스크류 축이 보강된 경량식혈기 개발)

  • Kim, J.H.;Kim, K.D.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.62-62
    • /
    • 2017
  • 모터와 스크류를 이용한 경량 식혈기를 처음으로 개발함에 따라 실제 산림의 식재 시험에서 발생될 수 있는 것은 감속기와 스크류의 연결부분의 파괴이다. 이 감속기 축의 파괴는 토양내부의 큰 자갈로 인해 스크류가 낄 경우 식재봉을 좌우로 흔들게 되면 가장 취약한 부분인 스크류와 감속기의 연결부위에 가장 강한 모멘트가 걸리게 된다. 물론 작업자의 부주위가 원인이기도 하지만 감속기(K6G30C. Korea)의 축 지름이 8mm이므로 식재봉을 좌우로 흔들면 굽힘파괴가 일어날 가능성이 높다. 감속기의 축이 파괴가 되지 않게 하는 방법은 재료의 강도가 높은 새로운 감속기를 찾은 일과 기존 감속기의 축을 굽힘응력에 안전하게 대응할 수 있게 설계를 하는 방법이 있다. 본 연구에서는 전자에 대한 조사와 동시에 후자에 대한 설계와 제작을 수행하여 기 제작된 경량식혈기와 비교 분석하였다. 스크류 축의 굽힘응력에 대한 대응 방법으로 감속기 축의 보강방법은 감속기 축에 식재봉으로 부터 굽힘응력이 직접 전달되지 않게 하기 위해 모터 하우징의 하부 위치에 감속기 축을 감싸는 Radial Bearing을 결합하였다. 그리고 스크류의 축은 상단의 지름을 크게 키운 상태로 감속기의 축에 연결하는 방법으로 설계하였다. 이때 식혈봉으로 부터 걸리는 모멘트는 스크류의 상단 지름에 걸리게 되는데 상단부는 모터 하우징의 하단과 단단하게 결합함으로써 감속기 축을 보호하게 되고 또한 감속기 축의 길이에서 Bearing과 스크류 상단부 큰 지름이 각각 반반씩 보호하는 형태로 설계하였다. 이와 같이 감속기의 축을 보강한 경우 종전의 식혈기보다 무게가 무거워지게 된다. 즉, 1차 식혈기 무게는 3.38kgf, 2차 시작기는 3.28kgf, 축 강도가 보강된 3차 시작기는 무게가 3.87kgf로 증가되었다. 따라서 종전보가 약 600g 증가되어 다소 무거운 느낌이 들었다. 여기서 리듐 폴리머 배터리와 가방의 무게 3.23kgf를 부가하면 1차, 2차, 3차 시작기의 무게는 각각 6.61kgf, 6.51kgf, 7.1kgf로 나타났다. 따라서 굽힘응력에 대한 보강의 방안으로 설계된 무게 과다가 현장 시험에서 작업자의 피로도 증가와 작업의 비효율성이 예상되어 포트묘의 현장 식재시에 이에 대한 평가를 수행하여 비교 분석할 예정이다.

  • PDF

Evaluation of Residual Strength in Damaged Brittle Materials (취성재의 손상후 잔류강도 평가)

  • Oh, Sang-Yeob;Shin, Hyung-Seop;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.137-142
    • /
    • 2001
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are often subjected to multiaxial stress. Brittle materials with crack or damaged by foreign object impacts are abruptly fractured from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength has been derived from tests under uniaxial stress such as a 4-point bend test. The strengths under multiaxial stresses might be different from the strength. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test. In the case that crack having 90deg. to loading direction, the ratio of biaxial to uniaxial flexure strength was 1.12. At a different crack angle to loading direction when it was evaluated by the 4-point bend test, the residual strength was different and the ratio of 45deg. to 90deg. was 1.16.

  • PDF

Evaluation of Residual Strength in Damaged Brittle Materials (취성재료의 손상후 잔류강도 평가)

  • Sin, Hyeong-Seop;O, Sang-Yeop;Seo, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.932-938
    • /
    • 2002
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are usually subjected to multiaxial stress state. Brittle materials with cracks or damage by foreign object impacts are apt to fracture abruptly from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength of structural members with damage has been tested under uniaxial stress condition such as the 4-point bend test. Depending upon the crack pattern developed, the strength under multiaxial stress state might be different from the one under uniaxial. A comparative study was carried out to investigate the influence of stress state on the residual strength evaluation. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test, when a small size indendation crack was introduced. In the case that crack having an angle of 90deg. to the applied stress direction, the ratio of biaxial to uniaxial flexure strength was about 1.12. The residual strength was different from crack angles to loading direction when it was evaluated by the 4-point bend test. The ratio of residual strength of 45deg. crack to 90deg. one was about 1.20. In the case of specimen cracked by a spherical impact, it was shown that an overall decrease in flexure strength with increasing impact velocity, and the critical impact velocity for formation of a radial and/or cone crack was about 30m/s. In those cases that relatively large cracks were developed as compared with the case of indented cracks, the ratio of residual strength under biaxial stress state to one uniaxial became small.

Effect of Shaft Misalignment on Bending Strength of Helical Gear for Metro Vehicles (전동차용 헬리컬기어의 축 조립오차에 따른 굽힘강도의 영향)

  • Lee, Dong-Hyung;Choi, Don-Bum;Kang, Seong-Woong;Choi, Ha-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.64-72
    • /
    • 2022
  • Gear designers need to select the proper tolerances for deviations in both the center distance and parallelism of axes because these deviations cause high stresses and lead to fatigue breakage of the teeth. In this study, a three-dimensional finite element analysis model was developed for a helical gear used in metro vehicles, and a bending stress analysis method for gear pairs was established according to the contact position change. Using this model, the effect of shaft misalignment due to the center distance and shaft parallelism deviations on the bending stress of the gear was analyzed. As a result, the magnitude of the bending stress changed nearly linearly with the change in the center distance deviation. The tooth contact of the helical gear is biased toward the end of the tooth width when the parallelism deviations of the shaft occur, and the tooth root bending stress increases.

Study on Biaxial Flexural Strength by Glass-infiltration of Zirconia Ceramics (지르코니아 세라믹의 Glass-infiltration에 의한 2축 굽힘강도에 관한 연구)

  • Joo, Kyu-Ji;Jung, Jong-Hyun;Song, Kyung-Woo
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • This study was to evaluate the biaxial flexural strength of zirconia ceramics after glass-infiltration on zirconia core. The zirconia specimens were made with diameter-15mm, thickness-0.6mm using zirconia block which divided into 1) sintered group, 2) heat - treated group, 3) Glass - infiltrated group and experimented fracture strength by each 10 specimens in experimental group. The biaxial flexural test was performed at crosshead speed of 0.1${\beta}\;{\AE}$ min. The experiment result average fracture strength was shown 541.0${\beta}\acute{A}$ in sintered group and glass-infiltrated group as 662.2${\beta}\acute{A}$ river of 22.4% rise appear. Weibull coefficient sintered group is 3.462 and glass-infiltrated group improved believability about fracture strength from melting permeation processing of glass by 4.716.

  • PDF

Implementation of Strength Estimation Algorithm on the Metallic Plate Fixation (금속고정용의 강도 평가 알고리즘 구현)

  • Kin, Jeong-Lae;Kim, Kyo-Ho;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.45-54
    • /
    • 2009
  • This study was developed the metallic plate for bone fixation in the neurosurgery and general surgery and plates has a finn place in bone operating and treatment. The plates can be realized to bending strength and stiffness for strength estimation. Maximum point of bending curves has a bending point(P) with maximum load which to applied nearly 0.2% offset displacement. The device's sizing has a ${\Phi}13$ and ${\Phi}18$, and algorithm of strength estimation compared a plate(${\Phi}13$, ${\Phi}18$, ${\Phi}13-{\Phi}18$). The bending strength of the curved metallic plate has to evaluate maximum of a 311N, 387N, 410N, 474N. When a displacement preserve with a load, tensile stress through to press a plate is 274N, 324N, 382N, 394N. The algorithm of strength estimation can be used to support estimation of bending strength and stiffness. Their tool bring to settlement in the new basic algorithm for evidence with varied adjustment.

  • PDF

Strength Analyses of New 2- and 3-Axis-Type Small Multiplying Gears in Dental Hand-Pieces (치과드릴 구동용 신 소형 2축 및 3축형 증속기어 강도특성 비교)

  • Kim, Cheol;Kim, Ju-Yeong;Lee, Jung-Ho;Kwak, Se-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1027-1032
    • /
    • 2012
  • Two types of very small multiplying gears and arrays have been developed for new dental hand-pieces, and the increased speed ratios, modules, number of teeth, gear diameters, and gear types were calculated based on the dynamics of the machinery. The contacting and bending strengths were evaluated for gear teeth with two design concepts using AGMA equations and finite element analyses, and the contacting stresses on teeth with and without DLC (diamond-like-carbon) coating layers were calculated. Fatigue and tension tests were performed to obtain an S-N curve, the Young's modulus, and the strength of the gear material, and these were utilized in the analyses. Slightly larger stresses were found for 2-axis-type gears than for other types of gears, and the S-N curves showed that a gear lifetime of 109 cycles was satisfied. The contacting stresses in gears coated with DLC were reduced by 30%. A new prototype model of a hand-piece with small gears was successfully fabricated and tested.

Evaluation of Fracture Strength of WA-Vitrified and Resinoid Bond Grinding Wheels by Acoustic Emission (AE에 의한 WA계 비트리파이드 및 레지노이드 結合劑硏削숫돌의 破壞强度評價)

  • 강명순;한응교;권동호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.241-251
    • /
    • 1988
  • The purpose of this paper is to evaluate fracture strength of WA-vitrified and resinoid bond grinding wheels by means of acoustic emission. The paper conducts tension test, compression test, splitting tensile test and bending test with AE measuring system. These tests have been carried out in accordance with the grain sizes and grades of grinding wheels. The fracture strength of grinding wheels is evaluated by the clarification of biaxal fracture criterion of Babel and Sines. It clarifies the influence of factors of grinding wheel upon AE characteristics and evaluates the predictability of life of grinding wheels and the perception of fracture.

Evaluation of physical properties of polycarbonate temporary restoration materials (폴리카보네이트 임시수복재료의 물성 평가)

  • Kim, Gwang-Yun;Kwak, Young-Hun;Kim, Hee-Jung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.168-175
    • /
    • 2020
  • Purpose: The purpose is to test and evaluate the physical properties of commonly used temporary restoration materials and newly emerged materials. Materials and Methods: Four groups of polymer materials were evaluated: Polymethyl methacrylate (PMMA) 2 groups, Polyetheretherketone (PEEK), Polycarbonate. Four physical properties were tested: surface hardness, bending strength, abrasion resistance during wear, wear behavior. The 3-axis bending strength and Vickers hardness test were measured using a universal testing machines respectively. The microstructure was observed with a scanning electron microscope and weight comparison was evaluated after 100,000 chewing tests using a chewing simulator. Kruskal wallis test was performed to evaluate statistical significance. Results: The four groups showed the highest flexural strength and Vickers hardness of PEEK, followed by PC, PMMA-H, PMMA-T. Microstructure observation also showed the least surface roughness in the PEEK group, followed by PC, PMMA-H, PMMA-T. Conclusion: PC is considered to have sufficient mechanical properties that can be applied to the manufacture of temporary teeth. However, further studies, such as biocompatibility, are considered to be necessary for practical clinical applications.

A Study on Dynamic Characteristics Analysis of Spindle Unit for Two-for-One Twister (투포원 연사기용 스핀들 유니트의 동특성 해석에 관한 연구)

  • Kim, Gwang-Yeong;Kim, Jong-Su
    • 연구논문집
    • /
    • s.27
    • /
    • pp.127-139
    • /
    • 1997
  • Two-for-one twister is a kind of textile machine and makes special fancy yarn which is twisted two times per one revolution in order to increase tensile strength and wear resis-tance of yarn. Spindle mechanism has to be stable and continuous motion in high speed revolution, and then optimal design is necessary to analyze dynamic characteristics of spindle unit. Spindle unit is consist of blade and rotary disc that are cylindrical body of revolution. For analysis of the dynamic characteristics of spindle unit, transfer matrix method is used and a numerical code SPINDLE also. Torsion and natural bending frequency of the spindle unit are examined. Its displacement mode is studied in function of variable revolutions.

  • PDF