• Title/Summary/Keyword: 2차 중합

Search Result 218, Processing Time 0.025 seconds

MONOMER RELEASE FROM PIT AND FISSURE SEALANT FOLLOWING BY SURFACE TREATMENT AND CURING TIME (치면열구전색제의 표면처리와 중합시간 증가에 따른 미반응 모노머 용리 평가)

  • Seo, Hyun-Woo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.122-129
    • /
    • 2007
  • The purpose of this study was to evaluate the effects of a various light curing time on the residual monomers released from light-cured dental sealant, and to examine the effectiveness of surface treatment in reducing the oxygen-inhibited layer of light-cured dental sealant($Helioseal^{(R)}$ F, Vivadent, Liechtenstein). Specimens were cured with a halogen light curing unit(XL 3000, 3M, USA) for 20, 40, 60s. Surface treatment of a light-cured dental sealant included no treatment(control group), a 10-seconds exposure to distilled water(Group I), 10-seconds manual application using a cotton pellet wetted with 75% alcohol(Group II), and 10-seconds application of a water/pumice slurry using a rubber cup on a slow-speed handpiece The specimens were eluted in distilled water for 10 minutes. All elutes were analyzed by HPLC for identification and quantitive analysis of monomers. The results of this study can be summarized as follows. 1. None of the chromatograms of the tested sealant displayed peaks with the same retention time as that of the standard solution, except for TEGDMA. 2. The release of TEGDMA decreased with increasing curing time in conventional halogen light. 3. All surface treatment group had a decrease of monomer release in comparison with no treatment group. 4. Treatment that Group III eliminated the greatest amount of any type of residual monomers. 5. The elution of unreacted monomers from curing with halogen curing unit for 60s and Group III was less than other groups.

  • PDF

Monitoring photo-polymerization reaction using near-IR spectroscopic technique (Near-IR 분광법을 이용한 광 경화 중합반응 관찰)

  • Chung, Soo-Chung;Hong, Jin-Who;Yu, Jeong-A
    • Analytical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.341-345
    • /
    • 2002
  • The extent of UV-curing photo-polymerization reaction was monitored by near-IR spectroscopic method. Acrylates containing quaternary ammonium salts and Darocur 1173 were used as reactive monomer and a photo initiator, respectively. The extent of photo-polymerization reaction was obtained from the conversion ratio of acrylate double bond calculated from the intensities of measured bands at 1615 nm and at 2105 nm. Near-IR spectroscopic methods can be an useful tool for the monitoring of the progress of photo-polymerization.

SURFACE HARDNESS OF THE DENTAL COMPOSITE CURED BY LIGHT THAT PENETRATE TOOTH STRUCTURE ACCORDING TO THICKNESS OF TOOTH STRUCTURE, LIGHT INTENSITY AND CURING TIME (치질을 투과한 조사광에 의한 복합레진 중합시 치질의 두께, 광세기 및 조사 시간이 복합레진의 표면 경도에 미치는 영향)

  • Cho, Soo-Kyung;Kim, Dong-Jun;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.2
    • /
    • pp.128-137
    • /
    • 2005
  • In this study we measured the amount of light energy that was projected through the tooth material and analyzed the degree of polymerization by measuring the surface hardness of composites. For polymerization, Optilux 501 (Demetron, USA) with two types of light guide was used: a 12 mm diameter light guide with 840 nW/$cm^2$ light intensity and a 7 mm diameter turbo light guide with 1100 nW/$cm^2$. Specimens were divided into three groups according to thickness of penetrating tooth (1 mm, 2 mm, 0 mm). Each group was further divided into four subgroups according to type of light guide and curing time (20 seconds, 40 seconds). Vickers' hardness was measured by using a microhardness tester. In 0 mm and 1 mm penetrating tooth group, which were polymerized by a turbo light guide for 40 seconds, showed the highest hardness values. The specimens from 2 mm penetrating tooth group, which were polymerized for 20 seconds, demonstrated the lowest hardness regardless of the types of light guides (p < 0.05). The results of this study suggest that, when projecting tooth material over a specified thickness, the increase of polymerization will be limited even if light intensity or curing time is increased.

Interaction of phage K11 lysozyme with phage RNA polymerase (Yeast two-hybrid 시스템을 통한 K11 phage lysozyme과 K11 phage RNA 중합효소와의 결합에 대한 연구)

  • Junn, Hyun-Jung;Lee, Sang-Soo
    • The Journal of Natural Sciences
    • /
    • v.14 no.2
    • /
    • pp.83-91
    • /
    • 2004
  • Recently phage K11 lysozyme was cloned and characterized in our lab. The K11 lysozyme was identified to have dual functions. It not only cuts a peptidoglycan bond in bacterial cell wall but also acts as an inhibitor of K11 RNA polymerase. It has been known that the T7 lysozyme binds specifically to T7 RNA polymerase and inhibits transcription. The dual activities of K11 lysozyme are atreeable to the case of T7 phage lysozyme and RNA polymerare. In order to identify the binding magnitude of K11 lysozyme with K11 RNA polymerase, yeast two-hybrid system was used. K11 phage lysozyme gene was introduced into pLexA plasmid and used as a prey. Also, K11 phage RNA polymerase gene was introduced into pJG4-5 and used as a bait. The binding between K11 lysozyme and K11 RNA polymerase was demonstrated by expression of reporter genes such as lacZ and leu2.

  • PDF

EFFECT OF SOFT-START CURING ON THE CONTRACTION STRESS OF COMPOSITE RESIN RESTORATION POLYMERIZED WITH LED AND PLASMA CURING UNIT (LED와 플라즈마 광원의 완속기시 광중합 방식이 복합레진의 수축응력에 미치는 영향)

  • Chung, Yang-Seok;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.4
    • /
    • pp.623-631
    • /
    • 2007
  • Effect of Soft-start curing on the contraction stress of composite resin restoration polymerized with LED and plasma curing unit The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin (Filtek $Z-250^{TM}$, 3M ESPE, USA) was cured using the one-step continuous curing method with three difference light sources ; conventional halogen light ($XL3000^{TM}$, 3M ESPE, USA) cure for 40 seconds at $400 mw/cm^2$, LED light (Elipar Freelight $2^{TM}$, 3M-ESPE, USA) cure for 20 seconds at $800\;mW/cm^2$ a and plasma arc light ($Flipo^{TM}$, LOKKI, France) cure for 12 seconds at $1300 mW/cm^2$. For the soft-start curing method ; LED light (Elipar Freelight $2^{TM}$, 3M-ESPE, USA) cure exponential increase with 5 seconds followed by 17 seconds at $800\;mW/cm^2$ and plasma arc light ($Flipo^{TM}$, LOKKI, France) cure 2 seconds light exposure at $650\;mW/cm^2$ followed by 11 seconds at $1300\;mW/cm^2$. The strain guage method was used for determination of polymerization contraction. Measurements were recorded at each 2 second for the total of 800 seconds including the periods of light application. Obtained data were analyzed statically using Repeated measures ANOVA, One way ANOVA, and Tukey test. The results of present study can be summarized as follows: 1. Composite resin restoration showed transient expansion just after irradiation of curing light. Contraction stress was increased rapidly at the early phase of polymerization and reduced slowly as time elapsed (P<0.05). 2. Contraction stress was not revealed significant difference between Halogen curing light groups and LED and Plasma Light curing with soft-start group (P>0.05). 3. LED and Plasma Light curing with soft-start showed lower contraction stress than the one-step continuous light curing (P<0.05).

  • PDF

Metabolism Activity of Bifidobacterium spp. by D.Ps of Konjac Glucomannan Hydrolysates (Konjac Glucomannan 가수분해 올리고당의 중합도별 Bifidobacterium spp.에 대한 대사활성)

  • 최준영;박귀근
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1186-1191
    • /
    • 2004
  • Bacillus sp. $\beta$-mannanase was purified by DEAE-sephadex ion exchange column chromatography. The partially purified P-mannanase exhibited maximum activity at pH 6.0 and 5$0^{\circ}C$, and was stable at a pH range of 5.5 to 7.0, and at temperature between 30 to 5$0^{\circ}C$. Konjac glucomannan was hydrolyzed by the purified $\beta$-mannanase, and then hydrolysates separated by 1st activated carbon column chromatography and 2nd sephadex G-25 gel filtration. The main hydrolysates were composed of D.P 5 and 7 glucomannooligosaccharides by TLC and FACE method. To investigate the effects of guar gum glucomannooligosaccharides on the in vitro growth of B. longum, B. bifidum, B. infantis, B. adolescentis, B. animalis, and B. breve, Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon SOUTce such as D.P 5, and D.P 7 glucomannooligosaccharides, respectively. B. longum grew up 4.6-fold and 5.3-fold more effectively by the replacement of D.P 5 and 7 glucomannooligosaccharides as the carbon source in a comparasion of standard MRS. Also, B. breve and B. animalis slightly grew up by the treatment of D.P 5 glucomannooligosaccharide.

A STUDY ON THE MODE OF POLYMERIZATION OF LIGHT-CURED RESTORATIVE MATERIALS CURED WITH PLASMA ARC LIGHT CURING UNIT (Plasma arc light curing unit을 이용한 광중합형 수복재의 중합양상)

  • Woo, Youn-Sun;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.262-269
    • /
    • 2002
  • The purpose of this study was to compare the effect of distance of light tip to resin surfaces and exposure time on the polymerization of surface and 2 mm subsurface of composite resins cured with two light sources; conventional halogen light (XL 3000, 3M, U.S.A.) and plasma arc light (Flipo, LOKKI, France) and compare the uniformity of polymerization from the center to the periphery of resin surfaces according to polymerization diameter cure with two light sources. From the experiment, the following results were obtained. 1. Difference of relative light intensity decrease in plasma arc light smaller than that of conventional halogen light(p<0.05). 2. In all groups, microhardness of top surfaces was decreased when distance of the light tip to resin surfaces is more than 2mm and increased according to increase of exposure time(p<0.05). 3. Difference of microhardness of the 2mm subsurface was rapidly decreased when distance of light tip to resin surfaces is more than 4mm(except, plasma arc light exposure time of 3 seconds). and the distance of light tip to resin surfaces and exposure time more affected 2mm subsurface rather than top surface(p<0.05). 4. Although exposure time was increased, difference of microhardness of the 2mm subsurface with the distance of light tip to resin surfaces was relatively high in groups between below 4mm and 6 mm(p<0.05). 5. Plasma arc light exposure time of 6 to 9 seconds produced microhardness values and microhardness change according to various distance similar to those produced with 40 to 80 second exposure to a conventional halogen light(p>0.05). 6. In all groups, microhardness was decreased gradually from the center to the periphery of resin surfaces(p<0.05).

  • PDF

A STUDY ON THE SHEAR BOND STRENGTH BY PLASMA ARC CURING SYSTEM FOR BRACKET BONDING (Plasma arc curing system을 이용한 브라켓의 접착에 관한 연구)

  • Kim, Jung-Yoon;Kim, Jong-Soo;Kwon, Soon-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.638-642
    • /
    • 2001
  • Recently, plasma arc curing system for curing resin composites has been introduced. This is characterized by a high output of light energy, which has the advantage of reducing the chair time and thereby making the treatment more comportable for the patients as well as for the dentist. The purpose of this study was to compare the shear bond strengths of light-cured orthodontic adhesive polymerized with conventional halogen light and plasma arc light. The 2 curing devices used were the XL3000 (3M, USA) conventional curing light and the Flipo (LOKKI, France) plasma arc light. The results from the present study can be summarized as fellows; 1. The mean shear bond strength for three groups were quite similar for 50 second conventional light group, 2 second plasma arc curing light group, 5 second plasma arc curing light group. 2. There was no statistically significant difference for three groups(p>0.05).

  • PDF

EFFECT OF INTERMEDIATE RESIN HYDROPHILICITY ON BOND STRENGTH OF SINGLE STEP ADHESIVE (중간레진의 친수성이 상아질 접착에 미치는 영향)

  • Kim, Yong-Sung;Park, Sang-Hyuk;Choi, Gi-Woon;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.5
    • /
    • pp.445-458
    • /
    • 2007
  • The purpose of this study was to evaluate the bond strength of a new Single step system with different curing mode composites, and to evaluate the effect of the intermediate resins which have different hydrophilicity on bonding ability by means of the micro shear bond testing and TEM examination for the adhesive interface. The adhesive used in this study was an experimental single step system (Bisco Inc., Schaumburg IL). Experimental groups were produced by using six kinds of intermediate resin having different hydrophilicity that was hydrophilic, hydrophobic and most hydrophobic resin and as filled or not after applying adhesive. Each experimental group was further divided into two subgroups whether the adhesive was light cured or not. Dual cured composite (Bis Core, Bisco Ltd., Schaumburg, IL) was placed on the adhesive layer as light cure or self cure mode. The results or bond strength were statistically analyzed using one way ANOVA and multiple comparisons are made using Tukey's test at ${\alpha}\;<\;0.05$ level. The results of this study were as follows ; 1. The application of intermediate resin did not increase the bond strength for light cured composite. 2. The bond strength of an experimental adhesive with self cured composite was significantly increased by the application of intermediate resin layer. 3. The bond strength of adhesive was irrespective of the cure or not of itself before intermediate resin layer applied. 4. As applied hydrophilic resin layer was, the initial bond strength was higher than both hydrophobic and most hydrophobic one used but there was no significance. Using a single step adhesive with dual/self cured composite, the incompatibility between both of them should be solved by the application of intermediate hydrophobic resin to reduce the adhesive permeability. However, Single step adhesive can be used in the light cured composite restoration without any decrease of the initial bond strength.

Effect of infection control barrier thickness on light curing units (감염 조절용 차단막의 두께가 광중합기의 중합광에 미치는 영향)

  • Chang, Hoon-Sang;Lee, Seok-Ryun;Hong, Sung-Ok;Ryu, Hyun-Wook;Song, Chang-Kyu;Min, Kyung-San
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.5
    • /
    • pp.368-373
    • /
    • 2010
  • Objectives: This study investigated the effect of infection control barrier thickness on power density, wavelength, and light diffusion of light curing units. Materials and Methods: Infection control barrier (Cleanwrap) in one-fold, two-fold, four-fold, and eightfold, and a halogen light curing unit (Optilux 360) and a light emitting diode (LED) light curing unit (Elipar FreeLight 2) were used in this study. Power density of light curing units with infection control barriers covering the fiberoptic bundle was measured with a hand held dental radiometer (Cure Rite). Wavelength of light curing units fixed on a custom made optical breadboard was measured with a portable spectroradiometer (CS-1000). Light diffusion of light curing units was photographed with DSLR (Nikon D70s) as above. Results: Power density decreased significantly as the layer thickness of the infection control barrier increased, except the one-fold and two-fold in halogen light curing unit. Especially, when the barrier was four-fold and more in the halogen light curing unit, the decrease of power density was more prominent. The wavelength of light curing units was not affected by the barriers and almost no change was detected in the peak wavelength. Light diffusion of LED light curing unit was not affected by barriers, however, halogen light curing unit showed decrease in light diffusion angle when the barrier was four-fold and statistically different decrease when the barrier was eight-fold (p < 0.05). Conclusions: It could be assumed that the infection control barriers should be used as two-fold rather than one-fold to prevent tearing of the barriers and subsequent cross contamination between the patients.