• Title/Summary/Keyword: 2차 동유체력

Search Result 4, Processing Time 0.018 seconds

Computation of the Linear and Nonlinear Hydrodynamic Forces on Slender Ships with Zero Speed in Waves : Infinite-Depth Case (정지 세장선의 파랑 중 선형 및 비선형 유체력 계산 : 무한 수심의 경우)

  • Yong-Hwan Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.1-13
    • /
    • 2000
  • In the present paper, an infinite-depth unified theory is applied to the computation of the linear and second-order hydrodynamic forces on slender bodies. No forward speed is assumed, which is valid for some types of ships, like FPSOs and shuttle tankers. Strip theory solution, which is essential for the extension to theory is extended to unified theory, was obtained using NIIRD program developed at MIT. The linear theory is extended to the computation of the second-order mean-drift forces and moment. Furthermore, Aranha's formular is applied to the prediction of wave drift damping coefficients. From this study, it is proved that unified theory provides an accuracy comparable with 3D panel method for the second-order forces as well as the linear solution with much less computational effort.

  • PDF

A Research on the viscous flow and the hydrodynamic force due to the small-amplitude in-phase oscillation of multi-cylinders (복합 원형 실린더군의 저진폭 동위상 진동에 의한 점성유동 및 동유체력에 관한 연구)

  • Sung-Kyun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.22-28
    • /
    • 1999
  • Small amplitude in-phase oscillations of multi-cylinders are considered both numerically and experimentally. Flow field is separated into inner and outer regions. The basic unsteady solution is obtained analytically and the secondary flow, termed as steady streaming flow, can be obtained numerically by using Finite Volume Code with Panel Method. The Particle Induced Velocimetry, one of whole field measurements, is introduced for comparison with numerical flow visualization quantitatively. Among the algorithms for PIV, the Three Step Vector Searching Technique is applied to reduce CPU time. Small but non-zero damping coefficient, that is important in lightly damped system can be obtained with varying number of bodies and distances.

  • PDF

Free Surface Suction Force Acting on a Submerged Slender Body Moving Beneath a Free Surface (자유수면 밑을 전진하는 세장체에 작용하는 수면흡입력의 추정)

  • Yoon, Bum-Sang;Trung, Dam Vam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.688-698
    • /
    • 2009
  • In this paper, the steady lift force acting on a slender body moving beneath regular wave systems of arbitrary wavelengths and directions of propagation is considered. The momentum conservation theorem and the strip method are used to obtain the hydrodynamic forces acting on the body and affecting its motions on the assumption that the body is slender. In order to obtain the vertical steady force acting on it, or the free surface suction force, the second-order hydrodynamic forces caused by mutual interactions between the components of the first-order hydrodynamic forces are averaged over time. The validity of the method is tested by comparison of the calculated results with experimental data and found to be satisfactory. Through some parametric calculations performed for a typical model, some useful results are obtained as to the depth of submergence of the body, wavelengths, directions, etc.

Analysis of Steady and Unsteady Flow Around a Ship Using a Higher-Order Boundary Element Method (고차경계요소법에 의한 선체주위 유동해석)

  • Sa-Y. Hong;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.42-57
    • /
    • 1995
  • An efficient and accurate scheme has been constructed by taking advantages of the hi-quadratic spline scheme and the higher-order boundary element method selectively depending on computation domains. Boundary surfaces are represented by 8-node boundary elements to describe curved surfaces of a ship and its neighboring free surface more accurately. The variation of the velocity potential complies with the characteristics of the 8-node element on the body surface. But on the free surface, it is assumed to follow that of the hi-quadratic spline scheme. By which, the free surface solution is free from numerical damping and has better numerical dispersion property. As numerical examples, steady and unsteady Neumann-Kelvin problems are considered. Numerical results for a submerged spheroid, Series 60($C_B=0.6$) and a modified support the proposed method. Finally, a new upstream radiation condition is derived using a wave equation operator in order to deal with problems for subcritical reduced frequency. The relevance of this operator has been confirmed in the case of unsteady Kelvin source potential.

  • PDF