• Title/Summary/Keyword: 2차 광물

Search Result 209, Processing Time 0.023 seconds

Development of Material Separation Process for Recycling Waste Coffee Capsules (폐 커피 캡슐의 재활용을 위한 재질분리 공정 개발)

  • Baek, Sang-Ho;Han, Yosep;Kim, Seongmin;Davaadorj, Tsogchuluun;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.70-81
    • /
    • 2021
  • This study evaluated the recyclability of waste plastics in used coffee capsules disposed of as municipal waste. For recycling, a new material separation process was developed to remove the coffee grounds through primary crushing, washing, sieving, and secondary crushing, followed by corona discharge electrostatic separation. Furthermore, for the under 10 mm size fraction samples, the aluminum removal and the plastic recovery were 95.4% and 98.3%, respectively, under optimal conditions. In addition, for the 15 mm fraction samples, the aluminum removal and the plastic recovery were 91.3% and 97.2%, respectively. To evaluate the recyclability of the separated waste plastics, the samples were pelleted, and their material properties were analyzed. No hazardous substances were detected, and the results were similar to those for homo-PP. Therefore, it was confirmed tha t sufficient functiona lity existed a s recycled PP. However, owing to the da rk color of the pellets, limited applications to black or dark products are expected.

Metamorphic Evolution of Metabasites and Country Gneiss in Baekdong Area and Its Tectonic Implication (백동지역의 변성염기성암과 주변 편마암의 변성진화과정과 그 지구조적 의미)

  • 오창환;최선규;송석환
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.103-120
    • /
    • 2002
  • In the Baekdong-Hongseong area, the southwestern part of the Gyeonggi Massif in Korea, ultramafic rocks occur as lenses within Precambrian granitic gneiss. At Baekdong area, ultramafic lens contains metabasite boudin which had undergone at least three stages of metamorphisms. The mineral assemblage on the first stage, Garnet+Sodic Augite+Hornblende+Plagioclase+Titanite, is recognized from the inclusions in garnet. The second stage is represented by the assemblage in matrix, Garnet+ Augite+Hornblende+Plagioclase, while the third stage is identified by the Hornblende+Plagjoclase $\pm$ Garnet assemblage in the symplectite formed around garnet. The P-T conditions of the first and the third stages are $690-780^{\circ}C$, 11.8-15.9 kb and $490-610^{\circ}C$, 4.0-6.3 kb, respectively. These data indicate that metabasite in Baekdong area had experienced a retrouade P-T path from the eclogite(EG) - high-pressure granulite (HG)-amphibolite (AM) transitional facies to the AM through HG-AM transitional facies. The core and rim of garnet in country granitic gneiss give $605-815^{\circ}C$, 10.7-16.0 kb and $575-680^{\circ}C$, 5.4-7.0 kb, respectively, indicating that the retrograde P-T path of granitic gneiss is similar to that of metabasite. Trace element data reveals that the tectonic setting of metabasite is island uc. The general geology, the metamorphic evolution, the mineral chemistry and the tectonic setting of Baekdong area indicate that the Baekdong-Hongseong area in Korea is a possible extension of the Sulu collision Belt in China. On the other hand, the Sm-Nd whole rock-garnet isochron ages of metabasites are 268.7-297.9 Ma which are older than the ages of UHP metamorphism (208-245 Ma) in the Dabie-Sulu Collision Belt. The older metamorphic ages suggest that collision between Sino-Korea and Yangtz plates may have occurred earlier in Korean Peninsula than China.

Research Possibility of Using Quartz Crystal Microbalance for Polystyrene Nanoplastics Adsorption to SiO2 Surface (수정진동자미세저울을 활용한 폴리스티렌 나노플라스틱의 SiO2 표면흡착 연구 가능성)

  • Myeong, Hyeonah;Kim, Juhyeok;Lee, Jin-Yong;Kwon, Kideok D.
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.265-275
    • /
    • 2021
  • Findings of microplastics and nanoplastics from diverse natural environments have increased demand for research of the fate and transport of the potentially toxic plastic particles in soils and groundwater. Weathering of microplastics would generate a significant amount of nanoplastics, but nanoplastics research is scarce because of technical difficulties in detecting nanoplastics in environments and analyzing nanoplastics adsorption to mineral surfaces. In the current study, we tested a possibility using quartz crystal microbalance (QCM) for application to nanoplastics adsorption analysis on mineral surfaces. In silica (SiO2)-packed column experiments, a measurable adsorption capacity for polystyrene nanoparticles often requires injection of unrealistically high ionic strengths or concentrated nanoplastic particles. The current test shows that QCM can measure polystyrene nanoplastics adsorbed onto SiO2 surface under the low ionic strengths and nanoplastics concentrations, where typical column experiments cannot. QCM is a promising tool for understanding the interaction between nanoplastics and mineral surfaces and thus transport of nanoplastics in soils and groundwater.

Chemical Weathering Characteristics of Red Saprolites at Granitic Hills in Yeongam, Southwestern Korea (한반도 남서부 영암의 화강암 구릉대 적색토의 화학적 풍화 특색)

  • Kim, Young-Rae
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.3
    • /
    • pp.315-327
    • /
    • 2012
  • Red saprolites are appeared in granitic hills in Yeongam, Southern Korean Peninsula. These red saprolites were analyzed for their geochemistry, including CIA, A-CN-K and A-CNK-FM ternary plots, to understand the chemical weathering trend and rubefaction of the saprolites. These saprolites were compared with laterite profiles in Cameroon formed under humid tropical conditions. The red saprolites in Yeongam show commonly massive loss of CaO, $Na_2O$, but $K_2O$ is being slow. The red saprolites in Yeongam relative to laterite and kaolinite profiles of Cameroon and Spain show weak chemical alteration owing to slow removal of $K_2O$, but high mafic constituents, $Fe_2O_3$ and MgO, for most of the samples. In the saprolites of Yeongam, mafic oxides become enriched because of the fast and massive removal of alkali constituents, such as CaO, $Na_2O$ and $K_2O$, relative to other elements, resulting in rubefaction of the saprolites. It is found that the rubefaction of the saprolites is not necessarily proportional to chemical weathering intensity.

  • PDF

Sulfur Isotope Composition and Isotopic Temperatures of the Shinyemi Lead and Zinc Ore Deposits, Western Taebaegsan Metallogenic Belt, Korea (신예미광상산(新禮美鑛床産) 유화광물(硫化鑛物)의 유황동위원소성분(硫黃同位元素成分) 및 동위원소지질온도(同位元素地質溫度)에 관(關)한 연구(硏究))

  • Kim, Kyu Han;Nakai, Nobuyuki
    • Economic and Environmental Geology
    • /
    • v.15 no.3
    • /
    • pp.155-166
    • /
    • 1982
  • Sulfur isotope compositions (${\delta}^{34}S$) of seventy one sulfide minerals from the Shinyemi ore deposits were determined to range from -10.1 to +5.0‰ with a mean value of +2.1‰. These values are roughly comparable to those of various hydrothermal ore deposits in Korea, about +2.0 to +7.0‰ in ${\delta}^{34}S$, suggesting that they are to be same in source of sulfur. The Shinyemi deposits are grouped into two types; the western bedded skarn orebodies and the eastern small pipes and veins. The ${\delta}^{34}S$ values of sulfide minerals from the bedded orebodies (early mineralization) are ranging from -10.1 to +2.5‰, which is relatively wide in range, whereas those of the pipes and veins. (later mineralization) have a narrow range of ${\delta}^{34}S$ values, +2.7 to +5.0‰, regardless of the kind of sulfide minerals. Isotopic temperature obtained from the sphalerite-galena mineral pairs of the New B orebody appeared to be about 400 to $540^{\circ}C$ are reasonably good agreement with the comparable data of skarn mineral assemblages. It is concluded that the west orebodies were formed in earlier stage at higher temperatures than the east orebodies formed later at lower temperatures. Judging from the various data from the present study, the Shinyemi deposits can be defined as a typical contact metasomatic deposit. The source of sulfur in the hydrothermal solutions is considered to be comagmatic with the Shinyemi granodiorite.

  • PDF

Bioleaching for Mine Waste of Pyrite by Indigenous Bacteria: Column Bioleaching at Room Temperature (토착박테리아를 이용한 광산찌꺼기 황철석으로부터 유용금속 이온 용출 특성: 상온에서 칼럼 용출)

  • Park, Cheon-Young;Cho, Kang-Hee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.251-265
    • /
    • 2010
  • A column bioleaching experiment at room temperature with no addition of sulfuric acid was effectively carried out to leach the valuable elements from pyrite, which is common mine waste. The Fe concentration of pyrite leachate from bioleaching column was 14 times higher than that of the control leachate, and secondary minerals were not formed. The $SO_4^{2-}$ concentration of the pyrite leachate was 2.99 times higher. The XRD intensity of the (111), (200), (220), (311), (222), (230) and (321) planes of pyrite decreased, whereas the intensity of (210) and (211) increased after column bioleaching.

Gemological and Minearlogical Properties of the Red Garnet Stones (적색 석류석 보석의 보석.광물학적 특징)

  • 김금조;김진섭;김원사;최진범
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.19-31
    • /
    • 2003
  • Chemical composition, crystal structure, refractive index, specific gravity, color, and luster were studied fur pyrope-almandine series garnets. The main coloring agents determining the reddish or brownish garnets were also investigated. It was also examined if there is any relationship between mineralogical properties with respect to the various chemical compositions in the solid solution, in the hope to figure out the existing classification values of R.I. and S.G. using gem- testing facilities to distinguish pyrope from almadine. It was found that 17 out of the 24 specimens belong to pyrope and the rest almandine. R.I. of pyrope goes up to 1.77 and that of almandine is higher than the value.5.5. of pyrope reaches to 3.88 and that of almandine is greater than the value of pyrope. X-ray diffraction data revealed that pyrope-almandine garnets are isometric with space group Ia3d, and also show that the variation of cell parameters are not significant enough to parallel with the chemical compositions of the series. R.I. and S.G. increase with FeO content. Fe and Mn are most responsible to the red-purple and orange coloration of the specimens, respectively. Both zircon and rutile crystals are most common inclusions in the reddish stones.

Geochemistry of Minerals in the Hongcheon Magnetite Deposits, Korea (홍천자철광상의 구성광물의 화학적 특징)

  • 이상헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.98-110
    • /
    • 1998
  • Hongcheon magnetite deposit is embedded, as a lens shape, in biotite banded gneiss belonging to the Gyeonggi metamorphic complex. It gradationally changes to the host quartz-feldspathic banded gneiss in the mineral composition. Magnetite ore bodies are composed of magnetite ores and magnetite banded gneiss which gradationally change each other in the amount of magnetite. They consist mainly of magnetite, quartz, plagioclase and chlorite accompanied with amphibole, biotite, muscovite, monazite, apatite, ankerite, siderite, rhodochrositic dolomite, calcite and rutile. Amphibole is subdivided into hornblende, richterite and magnesio-riebekite in magnetite ores, and magnesio-, ferro- or actinolitic hornblende in magnetite banded gneiss. The variation in chemical composition may be influenced by bulk composition and controlled mainly by glaucophane $Na(M4)Al_3^{VI}=CaMg$ and richterite Na(M4)Na(A)=Ca substitutions. Biotite in magnetite banded gneiss has an annite composition. Chlorite changes in chemical composition from pycnochlorite to diabantite in magnetite ores and belongs to pycnochlorite in magnetite banded gneiss. The mafic minerals and feldspar have been strongly altered by carbonate minerals which are secondarily formed by introduced hydrothermal solution. Fe-bearing carbonate minerals can be subdivided into ankerite, siderite and rhodochrositic dolomite according to the ratio of Fe-Mg-Mn component.

  • PDF

Characteristics of adsorption-desorption of herbicide paraquat in soils (제초제 paraquat의 토양중 흡.탈착 특성)

  • Lee, Seog-June;Kim, Byung-Ha;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.70-78
    • /
    • 1998
  • This study was conducted to investigate the adsorption-desorption characteristics of herbicide paraquat on clay minerals, humic materials, and soils under the laboratory conditions. Adsorption time of paraquat on clay minerals was faster than organic materials and soils. Adsorption amount on montmorillonite, 2:1 expanding-lattice clay mineral, was largest among the adsorbents tested. The adsorption capacity of paraquat was approximately 21 % of cation exchange capacity in soils, 45.1 % in kaolinite, and 80.6% in montmorillonite. Humic materials, humic acid and fulvic acid isolated from soil II, adsorbed larger amount of paraquat than kaolinite and soils. Distribution of tightly bound type of paraquat was larger in clay mineral and soils but loosely bound type was larger in humic acid and fulvic acid. In oxidized soil, the adsorption amount of paraquat was decreased to 85.1-95.5% of original soils. Distribution of unbound and loosely bound type of paraquat was decreased in oxidized soil but tightly bound type was increased. The competition cations decreased paraquat adsorption on humic materials and soils but not affected on montmorillonite. No difference was observed as the kinds of cations. In cation-saturated adsorbents, the adsorption amount was decreased largely in humic materials and soils but decreased a little in montmorillonite. The tightly bound type of paraquat in all adsorbents was not desorbed by pH variation, sonication, and cation application but loosely bound type was desorbed. However, the desorption amount was different as a kinds of adsorbents and desorption methods.

  • PDF

충남 지역 하수 슬러지의 물리$\cdot$화학적 특성에 따른 재활용 방안 연구 - 무기물을 중심으로 -

  • 이기환;이태호;조헌영;한기석
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2000.05a
    • /
    • pp.259-260
    • /
    • 2000
  • 충남 지역에서 발생되는 하수 슬러지의 물리$\cdot$화학적 특성을 고려하여 적정 처분 방안을 검토하기 위하여 중금속 및 비휘발성 고형물 분석을 수행하였다. 충남 지역에서 발생되는 하수 슬러지의 중금속 함유량은 기준치 이하로서 다소 안전하다 할 수 있으나 지속적인 관리가 요구되며, 이러한 중금속의 함유량도 타폐기물과의 혼합으로 희석효과를 가질 수 있을 것으로 사료된다. 또, 하수 슬러지의 광물 낙석 결과 하수 슬러지의 비휘발성 고형분의 성분은 시멘트 원료로 쓰이는 점토질과 유사하며 소각후에 연소재를 이용한 경량 골재 및 다른 2차 제품의 제조 가능성이 높은 것으로 판단된다.

  • PDF