Bioleaching for Mine Waste of Pyrite by Indigenous Bacteria: Column Bioleaching at Room Temperature

토착박테리아를 이용한 광산찌꺼기 황철석으로부터 유용금속 이온 용출 특성: 상온에서 칼럼 용출

  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University) ;
  • Cho, Kang-Hee (Department of Energy and Resource Engineering, Chosun University)
  • 박천영 (조선대학교 공과대학 에너지자원공학과) ;
  • 조강희 (조선대학교 공과대학 에너지자원공학과)
  • Received : 2010.06.30
  • Accepted : 2010.09.17
  • Published : 2010.09.30

Abstract

A column bioleaching experiment at room temperature with no addition of sulfuric acid was effectively carried out to leach the valuable elements from pyrite, which is common mine waste. The Fe concentration of pyrite leachate from bioleaching column was 14 times higher than that of the control leachate, and secondary minerals were not formed. The $SO_4^{2-}$ concentration of the pyrite leachate was 2.99 times higher. The XRD intensity of the (111), (200), (220), (311), (222), (230) and (321) planes of pyrite decreased, whereas the intensity of (210) and (211) increased after column bioleaching.

광산찌꺼기로 방치되어 있는 황철석으로부터 유용금속이온을 효과적으로 용출시키기 위하여 황산을 첨가하지 않고 실험실온도에서 칼럼 미생물용출 실험을 수행하였다. 칼럼 미생물용출 실험 결과 2차 생성물의 형성을 발견할 수 없었고, 비교시료보다 박테리아 시료에서 Fe 이온 함량이 14배 이상으로 높게 용출되었다. $SO_4^{2-}$ 함량은 비교시료보다 박테리아 시료에서 약 2.99배 이상으로 높게 용출되었다. XRD 분석결과, 황철석의 (111), (200), (220), (311), (222), (230), (321) 결정면에 해당되는 강도가 비교시료에서 보다 박테리아 시료에서 감소하였고, (210)와 (211) 결정면의 강도가 박테리아 시료에서 증가하였다.

Keywords

References

  1. 고명수, 박현성, 이종운 (2009) 황산화균 Acidithiobacillus thiooxidans를 이용한 폐금은광산 광미에서의 중금속용출. 한국지구시스템공학회지, 46, 239-251.
  2. 기상청 (2010) 관측자료. http://www.kma.go.kr/weather/observation/past_cal.jsp.
  3. 김동진, 조경숙, 안종관, 박경호, 손정수, 정헌생 (2003) Thiobacillus ferrooxidans에 의한 황동석 정광의 침출반응. 한국지구시스템공학회지, 40, 89-96.
  4. 김영호, 황길찬, 조현구 (2006) $FeS_2$의 압축성 연구. 한국광물학회지, 19, 189-195.
  5. 노열, 문희수 (2000) 철 환원 박테리아를 이용한 자철석합성. 한국광물학회지, 13, 65-72.
  6. 노열, 문희수 (2001) 미생물을 이용한 나노입자의 코발트로 치환된 자철석의 합성. 한국광물학회지, 14, 111-118.
  7. 노열, 오종민, 서재용, 장희동 (2007b) 미생물을 이용한 신예미 자철광으로부터 철 침출에 관한 연구. 한국광물학회지, 20, 357-366.
  8. 노열, 박병노, 이제현, 오종민, 이승희, 한지희, 김유미, 서현희 (2007a) 전남 무안 갯벌 퇴적물에 관한 광물학적 및 생지구화학적 연구. 한국광물학회지, 20, 47-60.
  9. 박천영, 조강희 (2010) 토착호산성박테리아의 황철석 표면 부착과 용출 특성. 한국지구시스템공학회지, 47, 51-60.
  10. 박천영, 김순오, 김봉주 (2010) $42^{\circ}C$에서 토착호산성박테리아의 황철석 표면에 대한 선택적 부착과 용출 특성. 자원환경지질, 43, 109-121.
  11. 박천영, 한오형, 신대윤, 홍영의 (2009a) 광양 폐금광산에서 생성되는 산성광산배수와 황갈색 철수산화물의 지화학적 성분에 대한 계절적 변화 특성. 한국지구시스템공학회지, 46, 190-206.
  12. 박천영, 정경훈, 김계민, 홍영의, 조강희 (2009b) 화순 광산배수에 서식하는 토착 호산성 박테리아를 이용한 황철석의 용출 특성. 한국지구시스템공학회지, 46, 521-535.
  13. 이석훈, 김수진 (2000) 유구지역 화강암질 편마암의 풍화작용에 의한 광물 조성의 변화. 한국광물학회지, 13, 121-137.
  14. 이석훈, 김수진 (2004) 주기적으로 침수되는 퇴적암의 풍화특성. 한국광물학회지, 17, 23-35.
  15. Ahonen, L. and Tuovinen, O.H. (1992) Bacterial oxidation of sulfide minerals column leaching experiments at suboptimal temperatures. Applied and Environmental Microbiology, 58, 600-606.
  16. Berry, V.K. and Murr, L.E. (1978) Direct observations of bacteria and quantitative studies of their catalytic role in the leaching of low-grade, copper-bearing waste. In: Murr, L.E., Torma, A.E., and Brierley, A. (eds.), Metal Applications of Bacterial Leaching and Related Microbiological Phenomena, Academic Press, New York, 103-136.
  17. Bevilaqua, D., Acciari, H.A., Benedetti, A.V., and Garcia, J.R. O. (2007) Electrochemical techniques used to study bacterial-metal sulfides interactions in acidic environments. In: Donati, E.R. and Sand, W. (eds.), Microbial processing of metal sulfides, Springer, 59-76.
  18. Bhakta, P. and Arthur, B. (2002) Heap bio-oxidation and gold recovery at Newmont mining: first year results. J Met, 31-34.
  19. Brierley, C.L. (1978a) Bacterial leaching. Critical Reviews in Microbiology, 6, 207-262. https://doi.org/10.3109/10408417809090623
  20. Brierley, J.A. (1978b) Thermophilic iron-oxidising bacteria found in copper leaching dumps. Applied and Environmental Microbiology, 36, 523-525.
  21. Brierley, J.A. (2003) Response of microbial systems to thermal stress in heap-biooxidation pretreatment of refractory gold ores. Hydrometallurgy, 71, 13-19. https://doi.org/10.1016/S0304-386X(03)00143-9
  22. Brierley, J.A. and Brierley, C.L. (1978) Microbiol leaching of copper at ambient and elevated temperatures, In L.E. Murr, A.E. Torma, and J.A. Brierley (eds.), Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, Academic Press, New York, 477-490.
  23. Brimhall, D.B. and Wadsworth, M.E. (1973) Oxygen consumption in dump leaching. American Institute of Mining and Metallurgical Engineers, 254, 68-75.
  24. Bryner, L.C. and Anderson, R. (1957) Microorganisms in leaching sulfide minerals. Industrial and Engineering Chemistry, 49, 1721-1724. https://doi.org/10.1021/ie50574a033
  25. Ehrlich, H.L. and Fox, S.L. (1967) Environmental effects on bacterial copper extraction from low grade copper sulphide ores. Biotechnology and Bioengineering, 9, 471-485. https://doi.org/10.1002/bit.260090404
  26. Faure, G. (1991) Principles and applications of inorganic geochemistry. Macmillan Publishing Company, 626p.
  27. Garcia, O. Jr., Bigham, J.M., and Tuovinen, O.H. (1995a) Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal of Microbiology, 41, 578-584. https://doi.org/10.1139/m95-077
  28. Garcia, O., Jr.Bigham, J.M., and Tuovinen, O.H. (1995b) Oxidation of galena by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal of Microbiology, 41, 508-514. https://doi.org/10.1139/m95-067
  29. Gormely L.S., Duncan, D.W., Branion, R.M.R., and Pinder, K.L. (1975) Continuous culture of Thiobacillus ferrooxidans on a zinc sulfide concentrate. Biotechnology and Bioengineering, 17, 31-49. https://doi.org/10.1002/bit.260170104
  30. Groudev, S.N. and Groudeva,V.I. (1993) Microbial communities in four industrial copper dump leaching operations in Bulgaria. FEMS Microbiology Reviews, 11, 261-268. https://doi.org/10.1111/j.1574-6976.1993.tb00293.x
  31. Harder, W., Kuenen, J.G., and Matin, A. (1977) A review microbial selection in continuous culture. Journal of Applied Bacteriology, 43, 1-24. https://doi.org/10.1111/j.1365-2672.1977.tb00717.x
  32. Jones, R.A., Koval, S.F., and Nesbitt, H.W. (2003) Surface alteration of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans. Geochimica et Cosmochimica Acta, 67, 955-965. https://doi.org/10.1016/S0016-7037(02)00996-1
  33. Kingma, Jr. J.G. and Silver, M. (1980) Growth of iron-oxidizing Thiobacilli in the presence of chalcopyrite and galena. Applied and Environmental Microbiology, 39, 635-641.
  34. Leduc, L.G. and Ferroni, G.D. (1994) The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiology Reviews, 14, 103-120. https://doi.org/10.1111/j.1574-6976.1994.tb00082.x
  35. Lizama, H.M. and Suzuki, I. (1989) Bacterial leaching of a sulfide ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Part 2. column leaching studies. Hydrometallurgy, 22, 301-310. https://doi.org/10.1016/0304-386X(89)90027-3
  36. Marsden, J. and House, I. (1992) The chemistry of gold extraction. Ellis Horwood, 597p.
  37. Marsh, R.M. and Norris, P.R. (1983) The isolation of some thermophilic, autotrophic iron-and sulfur-oxidising bacteria. FEMS Microbiology Letters, 17, 311-315. https://doi.org/10.1111/j.1574-6968.1983.tb00426.x
  38. Miller, K.W. and Risatti, J.B. (1988) Microbial oxidation of pyrrhotites in coal chars. Fuel, 67, 1150-1154. https://doi.org/10.1016/0016-2361(88)90386-9
  39. Norris, P.R. (1990) Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Ehrlich, H.L. and Brierley, C.L. (eds.), Microbial mineral recovery, McGraw-Hill Publishing Company, 3-27.
  40. Norris, P.R. and Barr, D.B. (1985) Growth and iron oxidation by acidophilic moderate thermophiles. FEMS Microbiology Letters, 28, 221-224. https://doi.org/10.1111/j.1574-6968.1985.tb00795.x
  41. Norris, P.R., Parrott, L.M., and Marsh, R.M. (1986) Moderately thermophilic mineral-oxidizing bacteria. In: Ehrlich, H.L. and Holmes, D.S. (eds.), Biotechnology for the Mining, Metal-Refining, and Fossil Fuel Processing Industries, Biotechnology and Bioengineering Symp. No.16 Wiley, New York.
  42. Roberts, F.I. (1982) Trace element chemistry of pyrite: a useful guide to the occurrence of sulfide base metal mineralization. Journal of Geochemical Exploration, 17, 49-62. https://doi.org/10.1016/0375-6742(82)90019-X
  43. Robinson, P.C. (1983) Mineralogy and treatment of refractory gold from the Porgera deposit, Papua New Guinea. Transaction of Institution of the Mining and Metallurgy, 92, 83-89.
  44. Rodriguez-Leiva, M. and Tributsch, H. (1988) Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite, Archives of Microbiology, 149, 401-405. https://doi.org/10.1007/BF00425578
  45. Rojas-Chapana, J.A. and Tributsch, H. (2004) Interfacial activity and leaching patterns of Lptospirillum ferrooxidans on pyrite. FEMS Microbiology Ecology, 47, 19-29. https://doi.org/10.1016/S0168-6496(03)00221-6
  46. Sabatini, D.D., Bensch, K., and Barrnett, R.J. (1963) Cytochemistry and electron microscopy, the preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. The Journal of Cell Biology, 17, 19-58. https://doi.org/10.1083/jcb.17.1.19
  47. Sand, W., Gehrke, T., Jozsa, P.G., and Schippers, A. (2001) (Bio)chemistry of bacterial leaching - direct vs indirect bioleaching. Hydrometallurgy, 59, 159-175. https://doi.org/10.1016/S0304-386X(00)00180-8
  48. Savage, K.S., Tingle, T.N., Day, P.A., Waychunas, G.A., and Bird, D.K. (2000) Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne county, California. Applied Geochemistry, 15, 1219-1244. https://doi.org/10.1016/S0883-2927(99)00115-8
  49. Schippers, A. (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In: Donati, E.R. and Sand, W. (eds.), Microbial processing of metal sulfides, Springer, 3-25.
  50. Schippers, A., Hallmann, R., Wentzien, S., and Sand, W. (1995) Microbial diversity in uranium mine waste heap. Applied and Environmental Microbiology, 61, 2930-2935.
  51. Shi, S.-Y. and Fang, Z.-H. (2004) Bioleaching of marmatite flotation concentrate by Acidothiobacillus ferrooxidans. Hydrometallurgy, 75, 1-10. https://doi.org/10.1016/j.hydromet.2004.05.008
  52. Silverman, M.P. (1967) Mechanism of bacteria pyrite oxidation. Journal of Bacteriology, 94, 1046-1051.
  53. Torma, A.E. (1977) The role of Thiobacillus ferrooxidans in hydrometallurgical process. Adv. Biochem. Eng., 6, 1-37.
  54. Torma, A.E. (1988) Leaching of metals. Biotechnology. Vol. 6B, 367-399.
  55. Viera, M., Pogliani, C., and Donati, E. (2007) Recovery of zinc, nickel, cobalt and other meatals by bioleaching. In: Donati, E.R. and Sand, W. (eds.), Microbial processing of metal sulfides, Springer, 103-119.