• 제목/요약/키워드: 2차원절삭

검색결과 76건 처리시간 0.035초

SKD11의 2차원 절삭실험을 통한 절삭 특성 해석 (The Analysis of Machining Characteristics of SKD11 by Orthogonal Cutting Experiments)

  • 김남규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.365-370
    • /
    • 1999
  • SKD11 is one of the most difficult workpiece for machining, so it is necessary to evaluate the machining characteristics of SKD11. The workpiece was made to be the pipe form and heat-treated to HRC45. In this paper, the orthogonal cutting experiment of this material was carried out with TiAlN coated WC cutting tool of 4 kinds of rake angle. After cutting experiment, cutting characteristics of SKD11 were investigated according to variation of cutting speed, feedrate and rake angle.

  • PDF

2차원 절삭 칩 모델에 의한 응력분포 해석에 관한 연구 (A Study on the Analysis of Stress Distribution by Orthogonal Cutting Chip Model)

  • 김정두;이은상;현동훈
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2926-2935
    • /
    • 1993
  • Chip breaker selection analysis, only being possible through experimental process, was obtained by a applied equation which used an orthogonal cutting model and a basic chip deformation. This equation could present an analysis of the chip breaking phenomena without the use of an actual experimetal method, and it was applied to computer simulation and proved the validity of theory through actual experiments. From these results, an efficient method for finding the optimum conditions of chip breaking was found through an optimized theory being applied to basic program. A finite element model for simulating chip breaking in orthogonal cutting was developed and discussed. By simulation the animation of chip breaking is observed in process on the computer screen.

유한요소법을 이용한 절삭가공면의 소성스트레인에 관한 연구 (A Study on Plastic Strain after Orthogonal Machining using Finite Element Analysis)

  • 신형곤;김태영
    • 한국기계가공학회지
    • /
    • 제2권3호
    • /
    • pp.69-75
    • /
    • 2003
  • Plastically deformed layer influences the mechanical property of the mechanical element such as creep hardening, microscopical crack and stress corrosion destruction. Therefore, the property so called the surface integrity has to be considered, and the machined surface including plastic deformation, distribution of stress has to be conducted quantitatively. This paper explains the orthogonal cutting, and made an orthogonal cutting model using the finite element method, then analyzed cutting power, plastic deformation of workpiece. It introduces the developed subsequent recrystallizations technique for measurement of the plastic strain of machined surface, and verified the technique.

  • PDF

2차원 절삭가공에 대한 강열점소성 유한요소법의 활용 (Application of the Rigid-Thermoviscoplastic Finite Element Method to Orthogonal Cutting Process)

  • 고대철;고성림;박태준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.965-968
    • /
    • 1997
  • The objective of this study is to develop a rigid-thermoviscoplastic finite element program for the analysis of orthogonal cutting process. Deformation of the workpiece material is considered as rigid-viscoplastic and the numerical solution is obtained from the coupled analysis bctween plastic deformation and temperature field, including treament of temperature dependent material properties. The chip and the burr formation are simulated for the non-steady state orthogonal cutting using the developed program. To validate the program the predicted results at chip and burr format~on stage are compared with the published ones. The case of isothermal cutting process is also considered to study the thermal effect on the machining process.

  • PDF

선형절삭시험에 의한 TBM 디스크 커터의 최적 절삭조건 예측 (Prediction of the optimum cutting condition of TBM disc cutter in Korean granite by the linear cutting test)

  • 박관인;장수호;최순욱;전석원
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.217-236
    • /
    • 2006
  • 본 연구에서는 TBM의 면판 설계와 굴진성능 평가를 위한 기초 연구로 우리나라의 대표 암종인 황등 화강암에 대하여 LCM 시험기를 사용한 일련의 시험을 실시하였다. LCM 시험을 통하여 최적의 절삭 조건을 구하고 절삭 깊이와 커터 간격 등의 TBM 면판 설계인자가 굴진성능에 미치는 영향을 평가하고자 하였다 정확한 TBM 성능을 예측하기 위하여 기존 연구들에서 적용된 방법에서 탈피하여 3차원적인 절삭 부피를 정량적으로 측정하고자 하였다. 이를 위해 실시간 처리가 가능하고 정밀도와 정확도가 확보된 디지털 사진계측기법을 LCM 시험에 적용하였다. 또한 TBM 디스크 커터에 의한 암석의 절삭과정을 모사하기 위한 수치해석 기법의 적용성을 검토하기 위해 AUTODYN 2D를 적용하였다.

  • PDF

선삭가공의 칩형상 해석 (I) -칩흐름각 해석- (Analysis of the Chip Shape in Turing (I) -Analysis of the Chip Flow Angle-)

  • 이영문;최수준;우덕진
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.139-144
    • /
    • 1991
  • 본 연구에서는 절삭가공시 생성되는 칩의 형상해석의 일환으로 2차원 절삭시 칩은 절삭날에 수직한 방향으로 공구경사면을 흘러간다는 기본적인 전제조건과 Kluft 등의 칩흐름각 예측에 대한 제안중 노으즈반경(nose radius) 및 기울임각의 영향을 중 첩시키고, 또한 절삭날에 연하여 미변형 칩두께(undeformed chip thickness)가 달라지 는 경우 칩흐름의 세기는 이에 비례한다는 Baart등의 가정을 도입하여 칩흐름각에 대 한 새로운 해석을 시도하였다.

정면밀링가공에서 쟁기력을 고려한 3차원 절삭력 모델링 (A Mechanistic Model for 3 Dimensional Cutting Force Prediction Considering Ploughing Force in Face Milling)

  • 권원태;김기대
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.1-8
    • /
    • 2002
  • Cutting force is obtained as a sum of chip removing force and ploughing force. Chip removing force is estimated by multiplying specific cutting pressure by cutting area. Since ploughing force is caused from dullness of a tool, its magnitude is constant if depth of cut is bigger than a certain value. Using the linearity of chip removing force to cutting area and the constancy of ploughing force regardless of depth of cut which is over a certain limit each force is separated from measured cutting force and used to establish cutting force model. New rotation matrix to convert the measured cutting force in reference axes into the forces in cutter axes is obtained by considering that tool angles are projected angles from cutter axes to reference axes.. Spindle tilt is also considered far the model. The predicted cutting force estimated from the model is in good agreement with the measured force.

밀링가공에서의 절삭력에 대한 해석적 연구 (An Analytic Approach for Cutting Forces in Milling Process)

  • 김국원;김남웅
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.270-273
    • /
    • 2002
  • This paper presents an effective cutting force model that enable us to predict the instantaneous cutting force in milling process from a knowledge of the work material properties and cutting conditions. The development of the model is based on the orthogonal machining theory with the effective rake angle which is defined in the plane containing the cutting velocity and chip flow vectors. Face milling tests are performed at different feeds and, a fairly good agreement is shown between the predicted cutting forces and test results.

  • PDF

기어 챔퍼링 공정에서 공구의 절삭력 해석 (Analysis on Cutting Force of Tool in Gear Chamfering Process)

  • 최부림;황광복;배강열
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.52-62
    • /
    • 2013
  • In order to obtain the relation between the cutting force and the process parameters in the chamfering process for the gear of a gear shaft, analysis of the process was performed with a simplified model instead of considering the whole actual 3-dimensional cutting situation produced between cutting tool and gear. The model divided the actual situation into the accumulation of hundreds of 2-dimensional layers with a small thickness in the direction of the height of gear and derived cutting force at a cutting position by accumulating each cutting force calculated in a layer. With proposed method to analyze the cutting forces in the chamfering process, it was revealed that the cutting position and size were exactly searched to calculate the cutting force in each layer. The total cutting force was the highest in the corner where the cutter encountered the gear first during the relative motion between them. The cutting forces were changed in proportion to the cutting parameters such as feed rate and trajectory.