• Title/Summary/Keyword: 2진탐사

Search Result 146, Processing Time 0.02 seconds

A Study on Freeze-Thaw Conditions Analysis of Soil Using Sentinel-1 SAR and Surface State Factor (Sentinel-1 SAR와 지표상태인자를 활용한 토양의 동결 융해 상태 분석 연구)

  • Yonggwan Lee;Jeehun Chung ;Wonjin Jang ;Jinuk Kim;Seongjoon Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.609-620
    • /
    • 2023
  • In this study, we used Sentinel-1 C-band synthetic aperture radar to calculate the surface state factor (SSF) for distinguishing the frozen-thawed state of soil. The accuracy of SSF classification was analyzed through comparison with air temperature (AT), grass temperature (GT), and underground temperature (UT). For the analysis, 116 Sentinel-1B Descending nodes observed over a period of 4 years from 2017 to 2020 were established for the central region of South Korea. AT, GT, and UT data were obtained from 23 soil moisture observation points of the Rural Development Administration during the same period, and analyzed using the 06:00 am data adjacent to the shooting time of the Sentinel-1B images. The average accuracy and F1-score for all stations were 0.63 and 0.47 for AT, 0.63 and 0.48 for GT, and 0.57 and 0.21 for UT, respectively. For winter (December-February) data, the average accuracy and F1-score were 0.66 and 0.76 for AT, 0.67 and 0.76 for GT, and 0.47 and 0.44 for UT, respectively. The increase in accuracy during winter data may be attributed to the fact that errors occurring in other seasons are not included.

Dynamic Positioning Control System for Gas & Oil Exploration Platforms Using H$\infty$ Control (H$\infty$ 제어를 이용한 가스 및 석유 탐사용 플랫폼의 동위치 제어)

  • Yoo Hui Ryong;Rho Yong Woo;Park Dae Jin;Koo Sung Ja;Park Seoung Soo;Kim Sang Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.62-69
    • /
    • 1999
  • This paper presents a design method of dynamic positioning control system(DPS) for floating Platform with rotatable and retractable thrusters using H$\infty$ servo control design method. The norm band of uncertainty is captured by multiplicative perturbation between nominal model and reduced order model. A controller robust to the uncertainty is designed applying H$\infty$ synthesis. The control law satisfying robust stability and nominal performance condition is determined through the mixed sensitivity approach. The control algorithm was evaluated on the basis of computer simulation for a proposed DPS design method and experiments was carried out with an image processing method for measurement of DPS position in a water tank The results of overall experiments show that proposed control method will be good to keep at a specified position. And they are compared with the experimental results by LQG synthesis and H$\infty$ optimal control design method.

  • PDF

VSOP-2 운용을 위한 37-38GHz 대역 보호와 APG-12 3차 회의 결과

  • Chung, Hyun-Soo;Oh, Se-Jin;Je, Do-Heung;Roh, Duk-Gyoo;Sohn, Bong-Won;Lee, Sang-Sung;Kim, Hyo-Ryoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.47-47
    • /
    • 2010
  • APT(Asian-Pacific Telecommunity)는 아시아-태평양지역 국가의 공동이익을 도모하기 위하여 결성된 아-태지역 전파협의체 조직으로, WRC(세계전파통신회의)회의에서의 아-태지역 주관청의 공동이익을 얻기 위해 APG(APT Conference Preparatory Group for WRC)회의를 연간 1회의 비율로 개최하고 있다. WRC-12회의에 대비하여 결성된 APG-12 회의가 2010년 3월 태국 방콕에서 개최되었으며, 전파천문업무 보호 및 22 GHz 대역 달탐사, 38 GHz 대역 Space-VLBI운용대역과 관련된 WRC-11 의제 1.6, 1.11, 1.12 등에 대해 활발한 토론이 있었다. WRC-12 의제 1.12는 항공이동국이 ASTRO-G와 같은 차세대 space-VLBI의 우주연구업무에 유해한 간섭을 줄 수 있으므로, 항공이동업무의 간섭으로부터 37-38GHz대역의 우주연구업무를 보호하기 위한 연구의제이다. 따라서 한국천문연구원에서는 KVN과 일본국립천문대(ASTRO-G)간의 원활한 국제 공동VLBI연구를 위해, WRC회의에서 최종적인 규정개정을 함에 있어서 필요한 아-태지역 국가의 공동의견을 창출하기 위한 APT회의에서 주도적인 역할을 담당하고 있다. 본 발표에서는 APG-12 3차 회의에 제출한 우리나라의 기고서 제출 결과 및 동 회의에서의 최종결과 및 향후 대응책에 대해서도 알아보고자 한다.

  • PDF

Study on the Building of Digital Terrain Model Using Satellite Remotely Sensed Data and Its Applications (위성 원격탐사 데이타를 이용한 지형표고모델 산출 알고리즘 구축 및 응용)

  • 최윤수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.141-151
    • /
    • 1995
  • In generating DTM as basic data to GIS, the use of existing map is difficult to aquire current data and the method using airphotos needs cost for stereoplotting and ground control surveying. So, the method of DTM generation by satellite imagery is promising because satellite is able to observe wide area at once. In this study the program for SPOT bundle adjustment and image matching based on Coarse to Fine method is developed and various image enhancement algorithm is used for more accurate DTM generation and also evaluation of accuracy was carried out. Further more, orthophoto, a bird's eye-view, contour map producing, net-work analysis and terrain analysis were performed for GIS applications using generated DTM in this study. Generated DTM using SPOT stereo imagery is useful for GIS applications such as automated mapping, facility management, national geographic information system. Moreover developed automatic DTM generation pro-gram is studied, tested and verified more to be applicable to all the area.

  • PDF

space-VLBI운용주파수대역 보호를 위한 APG-12 5차회의 최종결과

  • Chung, Hyun-Soo;Oh, Se-Jin;Je, Do-Heung;Roh, Duk-Gyoo;Sohn, Bong-Won;Lee, Sang-Sung;Kim, Hyo-Ryoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.135-135
    • /
    • 2011
  • APT(Asian-Pacific Telecommunity)는 아시아-태평양지역 국가의 공동이익을 도모하기 위하여 결성된 아-태지역 전파협의체 조직으로, WRC(세계전파통신회의)회의에서의 아-태지역 주관청의 공동이익을 얻기 위해 APG(APT Conference Preparatory Group for WRC)회의를 연간 1회의 비율로 개최하고 있다. 2012년의 WRC-12회의에 대비하여 아태지역 회원국의 최종 공동의견서를 작성하기 위해, APG-12 5차회의가 2011년 8월 29일-9월 3일 부산에서 개최되었으며, 전파천문업무 보호 및 22 GHz 대역 달탐사, 38 GHz 대역 Space-VLBI운용대역과 관련된 WRC-12 의제 1.6, 1.11, 1.12 등에 대한 회의가 있었다. 따라서 한국천문연구원에서는 38 GHz 대역 Space-VLBI운용대역과 관련된 전파천문업무 및 우주연구업무의 원활한 운용을 위해, APG-12 5차회의에 참석하여 WRC-12회의에 제출하기 위한 아-태지역 국가의 공동의견서 작성에 주도적인 역할을 담당하였다. 본 발표에서는 한국천문연구원과 일본국립천문대간 공동연구를 수행하게될 space-VLBI의 적절한 운용보호를 위하여, APG-12 5차 회의에 제안한 우리나라의 기고서 제안 내용 및 동 회의에서의 최종 아태지역 회원국 공동의견서 결과 및 향후 대응책에 대해서도 알아보고자 한다.

  • PDF

Seismic Characteristics of Tectonic Provinces of the Korean Peninsula (한반도 주요 지체구조구별 지진학적 특성)

  • Lee, Kie-Hwa;Kim, Jung-Ki
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.91-98
    • /
    • 2000
  • The seismicity of the Korean Peninsula shows a very irregular pattern of strain release typical of the intraplate seismicity. The Korean Peninsula may be divided into several tectonic provinces of differing tectonics. In this analysis, seismicity parameters for each tectonic province are evaluated from historical as well as instrumental earthquake data of the Korean Peninsula to examine the differences in seismic characteristics among tectonic provinces. Statistical analysis of the earthquake data made of incomplete data before the Choseon Dynasty and complete data afterwards reveals that there exist no significant differences in seismic characteristics between the tectonic provinces. It turns out the b-value in the intensity-frequency relation for the whole peninsula is about 0.6 and the maximum earthquake is about MMI X. The results of this study may be used in the probabilistic seismic hazard analysis of the Korean Peninsula and in estimating the design earthquake in earthquake engineering.

  • PDF

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part II - Effects of Road Emission (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part II - 도로 배출 영향)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1653-1667
    • /
    • 2020
  • In this study, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. We investigated the characteristics of fine particulate matter (PM2.5) distributions in a building-congested district. To analyze the effects of road emission on the PM2.5 concentrations, we calculated road emissions based on the monthly, daily, and hourly emission factors and the total amount of PM2.5 emissions established from the Clean Air Policy Support System (CAPSS) of the Ministry of Environment. We validated the simulated PM2.5 concentrations against those measured at the PKNU-AQ Sensor stations. In the cases of no road emission, the LDAPS-CFD model underestimated the PM2.5 concentrations measured at the PKNU-AQ Sensor stations. The LDAPS-CFD model improved the PM2.5 concentration predictions by considering road emission. At 07 and 19 LST on 22 June 2020, the southerly wind was dominant at the target area. The PM2.5 distribution at 07 LST were similar to that at 19 LST. The simulated PM2.5 concentrations were significantly affected by the road emissions at the roadside but not significantly at the building roof. In the road-emission case, the PM2.5 concentration was high at the north (wind speeds were weak) and west roads (a long street canyon). The PM2.5 concentration was low in the east road where the building density was relatively low.

Retrieval of Vegetation Health Index for the Korean Peninsula Using GK2A AMI (GK2A AMI를 이용한 한반도 식생건강지수 산출)

  • Lee, Soo-Jin;Cho, Jaeil;Ryu, Jae-Hyun;Kim, Nari;Kim, Kwangjin;Sohn, Eunha;Park, Ki-Hong;Jang, Jae-Cheol;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.179-188
    • /
    • 2022
  • Global warming causes climate change and increases extreme weather events worldwide, and the occurrence of heatwaves and droughts is also increasing in Korea. For the monitoring of extreme weather, various satellite data such as LST (Land Surface Temperature), TCI (Temperature Condition Index), NDVI (Normalized Difference Vegetation Index), VCI (Vegetation Condition Index), and VHI (Vegetation Health Index) have been used. VHI, the combination of TCI and VCI, represents the vegetation stress affected by meteorological factors like precipitation and temperature and is frequently used to assess droughts under climate change. TCI and VCI require historical reference values for the LST and NDVI for each date and location. So, it is complicated to produce the VHI from the recent satellite GK2A (Geostationary Korea Multi-Purpose Satellite-2A). This study examined the retrieval of VHI using GK2A AMI (Advanced Meteorological Imager) by referencing the historical data from VIIRS (Visible Infrared Imaging Radiometer Suite) NDVI and LST as a proxy data. We found a close relationship between GK2A and VIIRS data needed for the retrieval of VHI. We produced the TCI, VCI, and VHI for GK2A during 2020-2021 at intervals of 8 days and carried out the interpretations of recent extreme weather events in Korea. GK2A VHI could express the changes in vegetation stress in 2020 due to various extreme weather events such as heatwaves (in March and June) and low temperatures (in April and July), and heavy rainfall (in August), while NOAA (National Oceanic and Atmospheric Administration) VHI could not well represent such characteristics. The GK2A VHI presented in this study can be utilized to monitor the vegetation stress due to heatwaves and droughts if the historical reference values of LST and NDVI can be adjusted in a more statistically significant way in the future work.

A Comparative Errors Assessment Between Surface Albedo Products of COMS/MI and GK-2A/AMI (천리안위성 1·2A호 지표면 알베도 상호 오차 분석 및 비교검증)

  • Woo, Jongho;Choi, Sungwon;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Sim, Suyoung;Byeon, Yugyeong;Jeon, Uujin;Sohn, Eunha;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1767-1772
    • /
    • 2021
  • Global satellite observation surface albedo data over a long period of time are actively used to monitor changes in the global climate and environment, and their utilization and importance are great. Through the generational shift of geostationary satellites COMS (Communication, Ocean and Meteorological Satellite)/MI (Meteorological Imager sensor) and GK-2A (GEO-KOMPSAT-2A)/AMI (Advanced Meteorological Imager sensor), it is possible to continuously secure surface albedo outputs. However, the surface albedo outputs of COMS/MI and GK-2A/AMI differ between outputs due to Differences in retrieval algorithms. Therefore, in order to expand the retrieval period of the surface albedo of COMS/MI and GK-2A/AMI to secure continuous climate change monitoring linkage, the analysis of the two satellite outputs and errors should be preceded. In this study, error characteristics were analyzed by performing comparative analysis with ground observation data AERONET (Aerosol Robotic Network) and other satellite data GLASS (Global Land Surface Satellite) for the overlapping period of COMS/MI and GK-2A/AMI surface albedo data. As a result of error analysis, it was confirmed that the RMSE of COMS/MI was 0.043, higher than the RMSE of GK-2A/AMI, 0.015. In addition, compared to other satellite (GLASS) data, the RMSE of COMS/MI was 0.029, slightly lower than that of GK-2A/AMI 0.038. When understanding these error characteristics and using COMS/MI and GK-2A/AMI's surface albedo data, it will be possible to actively utilize them for long-term climate change monitoring.

Quality Evaluation through Inter-Comparison of Satellite Cloud Detection Products in East Asia (동아시아 지역의 위성 구름탐지 산출물 상호 비교를 통한 품질 평가)

  • Byeon, Yugyeong;Choi, Sungwon;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Sim, Suyoung;Woo, Jongho;Jeon, Uujin;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1829-1836
    • /
    • 2021
  • Cloud detection means determining the presence or absence of clouds in a pixel in a satellite image, and acts as an important factor affecting the utility and accuracy of the satellite image. In this study, among the satellites of various advanced organizations that provide cloud detection data, we intend to perform quantitative and qualitative comparative analysis on the difference between the cloud detection data of GK-2A/AMI, Terra/MODIS, and Suomi-NPP/VIIRS. As a result of quantitative comparison, the Proportion Correct (PC) index values in January were 74.16% for GK-2A & MODIS, 75.39% for GK-2A & VIIRS, and 87.35% for GK-2A & MODIS in April, and GK-2A & VIIRS showed that 87.71% of clouds were detected in April compared to January without much difference by satellite. As for the qualitative comparison results, when compared with RGB images, it was confirmed that the results corresponding to April rather than January detected clouds better than the previous quantitative results. However, if thin clouds or snow cover exist, each satellite were some differences in the cloud detection results.