• Title/Summary/Keyword: 2진탐사

Search Result 146, Processing Time 0.022 seconds

Education Program of KyungHee Astronomical Observatory for Highschool Students about Korean Lunar Mission

  • Lee, Chung Woo;Oh, Young-Seok;Jin, Ho;Kim, Kap-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.88.2-88.2
    • /
    • 2014
  • 경희대학교 천문대는 한국과학창의재단에서 후원하는 2013년 과학문화 민간활동 지원사업의 일환으로 "청소년, 우주를 향해 미래를 쏘다!"라는 멘토링 프로그램을 2013년 7월 23일부터 2014년 2월 28일까지 진행하였다. 본 프로그램의 참가대상은 경기지역 고등학교 1, 2학년 학생 32명이 참가하였고, 대학생 멘토 8명과 팀으로 활동하였다. 본 프로그램의 목적은 달 탐사를 주제로 한 체험프로그램을 통해 청소년들의 우주개발의 현황을 체험할 수 있는 기회를 제공하고, 체험 프로그램을 활용하여 창의력, 협동심, 자신감을 함양시키며 이공계 분야의 비젼과 진로 방향을 제시하는 것이다. 본 프로그램은 6개의 주제로 총 10회 동안 진행되었으며, 각각의 주제는 우리나라 우주개발 현장체험, 달탐사의 필요성 체험, 발사체 및 탑재체의 이해와 체험, 청소년이 바라본 우리나라 달탐사의 미래, '우주로' 체험 캠프, 최종발표회이다. 프로그램은 체험, 조사, 발표 및 토의 형식으로 진행되었다. 본 프로그램에서 기대되는 성과는 조별 활동 및 다양한 체험 실습으로 협동심 및 인성을 함양하고, 천문학/공학 분야의 전공 대학생의 멘토링으로 논리적, 체계적, 비판적인 사고를 유도하고, 학연 협력을 활용한 현장학습으로 청소년들의 이공계에 대한 흥미를 유발하고 진로 방향을 제시하며, 다양한 체험 실습 및 미래 지향적인 컨텐츠를 활용하여 천문학 및 우주과학에 대한 호기심을 자극하는 것이다. 본 프로그램에서의 최종 성과물은 기존의 달탐사와 차별적인 주제와 방법론을 고안하여 논리적이고 창의적으로 우리나라의 달탐사에 대한 방법론적인 아이디어를 유도하는 것에 중점을 두었다.

  • PDF

Deep Learning for Remote Sensing Applications (원격탐사활용을 위한 딥러닝기술)

  • Lee, Moung-Jin;Lee, Won-Jin;Lee, Seung-Kuk;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1581-1587
    • /
    • 2022
  • Recently, deep learning has become more important in remote sensing data processing. Huge amounts of data for artificial intelligence (AI) has been designed and built to develop new technologies for remote sensing, and AI models have been learned by the AI training dataset. Artificial intelligence models have developed rapidly, and model accuracy is increasing accordingly. However, there are variations in the model accuracy depending on the person who trains the AI model. Eventually, experts who can train AI models well are required more and more. Moreover, the deep learning technique enables us to automate methods for remote sensing applications. Methods having the performance of less than about 60% in the past are now over 90% and entering about 100%. In this special issue, thirteen papers on how deep learning techniques are used for remote sensing applications will be introduced.

Study of the Lunar Regolith using Multi-band Polarimetric Observations

  • Kim, Sungsoo S.;Jung, Minsup;Sim, ChaeKyung;Kim, Il-Hoon;Min, Kyoung Wook;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.65.2-65.2
    • /
    • 2014
  • 태양 빛이 달 표면에서 반사될 때는 일부가 편광 된다. 이러한 월면 편광은 달 표토층 입자의 크기와 성분을 알려주는 중요한 정보이나, 이전의 달 궤도선에서는 한 번도 탐사되지 않았다. 또한 달 탐사임무에 있어 틈새시장인 월면 특이지역 연구에도 편광이 중요한 기초자료를 제공한다는 사실이 최근 밝혀졌다. 이에 본 연구진은 한국형 달 탐사선을 위한 우리나라 고유의 창의적 과학 임무 중 하나로 <월면 다파장 편광 탐사>를 제안하며, 이러한 탐사에 필요한 기초연구 및 선행연구를 수행하고 있다. 본 발표에서는 우리가 수행한 지상으로부터의 다파장 편광 관측 결과를 보고하고, 최근 시작한 랩실험과 컴퓨터 시뮬레이션 실험에 대해 소개할 것이다.

  • PDF

Application of Geophysical Prospecting Method to Calculate Basic Data of Limestone Deposit Production (석회암 매장량 산출의 기초자료 계산을 위한 지구물리탐사법의 적용)

  • 서백수;김영화;진호일
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.131-139
    • /
    • 2001
  • Until recently, limestone yield production is mainly depend on geological investigation and boring. In the study seismic and electrical method are applied to calculate the basic data of limestone yield production. the result of geophysical prospecting, the depth of bed rock is approximately 17m. And there is a slightly difference between the limestone layer boundary which is drawn by electrical prospecting method and that of geological investigation.

  • PDF

Statistical Estimates of Cloud Thickness and Precipitable Water from GMS Brightness Data (GMS Brightness를 사용한 구름 두께와 가강수량의 통계적 추정)

  • 최영진;신동인
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.2
    • /
    • pp.153-164
    • /
    • 1990
  • A statistical correlation between cloud thickness and brightness is shown by regression analysis using the least-square method. Cloud thicknesses are obtained from radiosonde observation. Brightness values are obtained from GMS visible channel. Regression analyses are preformed on both thickness data used in conjunction with brightness data for summer season. The results are shown by the regression curve relating thickness and brightness accounting for 79% of variance. And the relationship between thickness and precipitable water in the cloud layers is analyzed. The thickness shows a positive correlation with precipitable water in cloudy layers.