• Title/Summary/Keyword: 2단 탈질

Search Result 16, Processing Time 0.023 seconds

Effect of addition of a catalystic layer on Denitrification System efficiency in a 500 MW Coal-fired Power Plant (500 MW 석탄화력발전소 촉매단추가에 따른 탈질설비 효율에 미치는 영향)

  • Lee, Sang Soo;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 2021
  • The government has recently come up with a policy to tighten regulations on air pollutant emissions due to public concerns over the emission of pollutants such as fine dust. The coal-fired power plant is speeding up the improvement of the performance of environmental facilities, and this paper deals with the cases of performance improvement by adding a catalyst to the 500 MW standard coal-fired power DeNox system, and examines the change in the performance factors according to the addition of catalysts and the efficiency of NOx removal. The DeNOx efficiency before and after improvement increased from 80% to 88%, and the conversion rate of SO2/SO3, ammonia slip which are performance factors satisfied the design assurance value, but exceeded the design assurance value for differential pressure. At the same time, the ammonia slip concentration and differential pressure items increased as the NOx removal efficiency increased, resulting in the need for management and improvement.

A Study of the Simultaneous Nitrification and Denitrification in a Single Bioreactor (단일 반응기를 이용한 동시 질산.탈질에 관한 연구)

  • Park, Jong-Il;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.220-228
    • /
    • 2007
  • In this study, effective simultaneous nitrification and denitrification reaction was accomplished in a completely mixed single bioreactor. As the important factors on the reaction, optimal DO concentration and effective range of influent C/N ratio was investigated with the synthetic wastewater. Experimental results show that stable nitrogen removals were accomplished with 0.5 mg/L DO concentration and over 7 C/N ratio. Nitrogen removal efficiency of the real municipal wastewater was low with 0.5 mg/L DO concentration because of its low C/N ratio. The increment of the C/N ratio at the inflow of the municipal wastewater with addition of external carbon source (glucose) over 7(up to 14) shows over 70% nitrogen removal in the single bioreactor.

Effect of Nitrogen Compounds and Organic Carbon Concentrations on $N_2O$ Emission during Denitrification (탈질에서 질소성분 및 유기탄소 농도가 $N_2O$ 배출에 미치는 영향)

  • Kim, Dong-Jin;Kim, Heon-Ki;Kim, Yu-Ri
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.134-141
    • /
    • 2011
  • The effects of the compounds and concentrations of nitrogenous electron acceptor, the ratio of electron donor/electron acceptor (C/N), and the complexity of electron donor on the emission of $N_2O$ during wastewater denitrification were quantitatively investigated in this study. The higher ${NO_3}^-$ and ${NO_2}^-$ concentrations, the more $N_2O$ emission was observed. ${NO_2}^-$ has strong effect on $N_2O$ emission as it emitted morc $N_2O$ than ${NO_3}^-$, 50 mg/L of ${NO_2}^-$-N gave the highest conversion (9.3%) and yield (9.8%) of $N_2O$ while ${NO_3}^-$-N (50 mg/L) gave 5.6% conversion and 11.0% yield. Lower C/N ratio decreases nitrogen removal efficiency, but it increases the conversion of $N_2O$ because of the incomplete denitrification by the limited organic carbon. When real domestic wastewater is used as the electron donor of the denitrification, $N_2O$ emission is reduced to 1/10 of the emission when single carbon (acetate) is used. It is thought that multiple carbon source utilizes many denitrification pathways and it seems to be helpful for the reduction of $N_2O$ emission.

A Study on the Regeneration of SCR Catalyst Deactivated by Unburned Carbon Deposition (탄소침적으로 피독된 탈질 촉매의 재생에 관한 연구)

  • Moon, Seung-Hyun;Lee, Seung-Jae;Ryu, In-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.928-935
    • /
    • 2010
  • A bag filter system was partially burnt down during a trial run of waste wood incineration boiler. This brought about unburned hydrocarbon which caused a rapid deactivation of low temperature SCR catalyst set up in two stage after the bag filter. The deactivated catalyst was investigated in order to trace the origin by several characterization methods such as XRD, EDX, BET, TGA, SEM. The deactivated catalyst was regenerated by different methods such as acid washing, water washing in ultrasonication, and calcination treatment under air condition. It is found the calcination treatment under air condition at $450^{\circ}C$ for 2 hours to be the best regeneration method. The catalytic activity was measured in the form of 2 cm ${\times}$ 2 cm ${\times}$ 10 cm (catalyst weight 10 g) honeycomb type. A deNOx efficiency of the regenerated catalyst showed 100% at $180^{\circ}C$ which is the same level of fresh one.

Evaluation of External Carbon Source on the 2 Stage Denitrification Process by Simulation of GPS-X (GPS-X 시뮬레이션을 이용한 2단탈질 공정에서 외부탄소원 적용성 평가)

  • Chung, Chang-Wha;Shim, Yu-Seop;Kim, Tae-Hyung;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.37-48
    • /
    • 2004
  • The purpose of this study was to evaluate adaptability of external carbon source using GPS-X program in pilot plant composed with 2-stage denitrification process. The result from analysis of pilot plant operation and GPS-X simulation showed that effluent concentration could be simulated similarly by modifying operation conditions, such as DO concentration, C/N ratio and other calibrated parameter. In order to satisfy the standard of the effluent water quality on T-N of 20mg/L, it required approximately 3.1 of C/N ratio and 50% of nitrogen removal efficiency when influent T-N is 36.9mg/L. To maintain the stable water quality of the receiving water, the effluent T-N concentration should be less than 10-15mg/L and the appropriate C/N ratio to remove nitrogen was 4.27-6.82. The analysis of sensitivity to kinetic coefficient and reaction constant showed that $Y_H$ and ${\mu}_{mAUT}$ were most sensitive to nitrate and ammonia nitrogen, relatively and sensitivity coefficient of their were 1.32, 1.98. It was concluded that as $Y_H$ decreased and ${\mu}_{mAUT}$ increased, the reaction rates of denitrification and nitrification increased and the removal efficiencies of $NO_3{^-}-N$ and $NH_4{^+}-N$ improved.

Isolation and Characterization of Denitrifying Phenol-Degrading Bacterium Pseudomonas sp. HL100. (탈질화성 페놀 분해균 Pseudomonas sp. HL100의 분리 및 특성)

  • 박수동;김연희;이흥식
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.303-308
    • /
    • 1998
  • A bacterial strain which utilizes phenol under denitrifying condition was isolated from the industrial waste water collected from the Chong-ju Industrial Complex. The strain was identified as Pseudomonas species from the morphological, physiological, and biochemical characteristics and designated as HL100. The strain can utilize phenol as the sole source of carbon and energy when nitrate is provided as the terminal electron acceptor. The isolated strain completely degraded 3 mM of phenol within 110 hour with concomitant reduction of nitrate to nitrite. The observed maximum doubling time was 20 hours. Under appropriate condition, complete reduction of nitrate to atmospheric N$_2$ was observed indicating that the isolated strain could perform complete steps of denitrification. The strain showed optimal growth at pH 7.0 and temperature of 37$^{\circ}C$ under denitrifying phenol-degrading condition. The strain can also utilize toluene as the sole carbon and energy source under the same growth condition. However, no growth was detected on xylene and benzene.

  • PDF

Separation of Vanadium and Tungsten from Spent SCR DeNOX Catalyst by Ion-exchange Column (SCR 탈질 폐촉매로부터 이온교환칼럼을 이용한 바나듐과 텅스텐의 분리)

  • Heo, Seo-Jin;Jeon, Jong-Hyuk;Kim, Rina;Kim, Chul-Joo;Chung, Kyeong Woo;Jeon, Ho-Seok;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.54-63
    • /
    • 2021
  • Vanadium and tungsten can be obtained by separating/recovering the leaching solution from a spent SCR DeNOX catalyst using the soda roasting-water leaching process. Therefore, in this study, the adsorption/desorption mechanism of vanadium and tungsten in an ion-exchange column was investigated using Lewatit MonoPlus MP 600, a strong basic anion exchange resin. The operating conditions for the separation of vanadium and tungsten in the ion-exchange column was intended to present. By conducting a continuous adsorption experiment in a pH 8.5 solution, the adsorption capacity of vanadium and tungsten was found to be 44.75 and 64.92 mg/(g of resin), respectively, which showed that the adsorption capacity of tungsten was larger than that of vanadium because of the difference in ion charge. Vanadium has a higher affinity for MP 600 than tungsten. Consequently, as the vanadium-containing solution is eluted through the ion exchange resin onto which tungsten is adsorbed, the adsorbed tungsten is exchanged with vanadium and desorbed. A continuous experiment was performed with a solution of vanadium and tungsten prepared at the same concentration as the spent SCR DeNOX catalyst leachate. The adsorption capacity of vanadium was found to be 48.72 mg/(g of resin) and 80% of the supplied vanadium was adsorbed; in contrast, almost no tungsten was adsorbed. Therefore, vanadium and tungsten were separated effectively. The ion exchange resin was treated with 2 M HCl at 15 mL/h, and 97.7% of the vanadium(99% purity) could be desorbed. After desorption, NH4Cl was added to precipitate ammonium polyvanadate at 90℃ and recover 93% of the vanadium.

Nitrification/Denitrification of Wastewater in one Column containing Biofilm (Biofilm으로 충전된 단일 Column을 이용한 폐수의 질산화/탈질산화 공정 연구)

  • 배해룡
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.79-84
    • /
    • 2002
  • This study investigated possibility of the nitrification and denitrification in one counter-current column with the growth of biofilm attached to its media. This experiment was performed through use of the lab scale reactor composed of the column and settler. The column used was packed with the small size of plastic rings called PALL($1.5{\times}1.5{\;}cm$) with a cylindrical shape. Synthetic wastewater was used in the experiment. The loading rates of carbon (C) and total nitrogen (TN) furnished to the reactor were 0.23 to 1.0 kg COD/m3.d and 0.023 to 1.0 kg N/m3.d, respectively. Major factors controlling the removal efficiencies of COD and TN were the different air flux and volumetric loading rates of COD and TN. The experimental results obtained from this study demonstrated that the removal efficiencies of COD ranged from 90 to 95% and those of TN were from 80 to 83% under the N loading rate of 0.035 and $0.058{\;}kg{\;}N/m^3{\cdot}d$, respectively. The patterns of TN removed were distinctively different on the limit of 50cm of column in depth. This indicated that the nitrification and denitrification occurred near the surface zone of and inside the biofilm respectively, upto the 50cm of the column in depth.

Removal of Nitrate and Particulate from Groundwater with Two stage Biofilter system (2단 생물막여과 탈질시스템에서 지하수의 질산성질소 및 입자제거특성)

  • Lee, Moo-Jae;Park, Sang-Min;Jun, Hang-Bae;Kim, Kong-Soo;Lim, Jeoung-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.669-675
    • /
    • 2005
  • Biological nitrate removal from groundwater was investigated in the biofilters packed with both gravel/sand and plastic media. Removal of particles and turbidity were also investigated in the 2-stage biofilter system consisted of biofilter and subsequent sand filter. In the single biofilter packed with gravel and sand, nitrate removal efficiency was dropped with the increase of filtration velocity and furthermore, nitrite concentration increased up to 3.2 mg-N/L at 60 m/day. Denitrification rate at the bottom layer below 25 cm was faster 8 times than upper layer in the up-flow biofilter. Nitrite build-up, due to the deficiency of organic electron donors, occurred at the upper layer of bed. Besides DO concentration and organic carbon, contact time in media was the main factor for nitrate removal in a biofilter. The most of the effluent particles from biofilter was in the range from 0.5 to $2.0{\mu}m$, which resulted in high turbidity of 1.8 NTU. However, sand filter followed by biofilter efficiently performed the removal of particles and turbidity, which could reduce the turbidity of final filtrate below 0.5 NTU. Influent nitrate was removed completely in the 2-stage biofilter and no nitrite was detected.