• 제목/요약/키워드: 2단계 클러스터링

Search Result 72, Processing Time 0.024 seconds

Information Technology Application for Oral Document Analysis (구술문서 자료분석을 위한 정보검색기술의 응용)

  • Park, Soon-Cheol;Hahm, Han-Hee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.2
    • /
    • pp.47-55
    • /
    • 2008
  • The purpose of this paper is to develop an analytical methodology of or릴 documents by the application of. Information Technologies. This system consists of the key word search, contents summary, clustering, classification & topic tracing of the contents. The integrated model of the five levels of retrieval technologies can be exhaustively used in the analysis of oral documents, which were collected as oral history of five men and women in the area of North Jeolla. Of the five methods topic tracing is the most pioneering accomplishment both home and abroad. In final this research will shed light on the methodological and theoretical studies of oral history and culture.

  • PDF

A study on Digital Agriculture Data Curation Service Plan for Digital Agriculture

  • Lee, Hyunjo;Cho, Han-Jin;Chae, Cheol-Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.171-177
    • /
    • 2022
  • In this paper, we propose a service method that can provide insight into multi-source agricultural data, way to cluster environmental factor which supports data analysis according to time flow, and curate crop environmental factors. The proposed curation service consists of four steps: collection, preprocessing, storage, and analysis. First, in the collection step, the service system collects and organizes multi-source agricultural data by using an OpenAPI-based web crawler. Second, in the preprocessing step, the system performs data smoothing to reduce the data measurement errors. Here, we adopt the smoothing method for each type of facility in consideration of the error rate according to facility characteristics such as greenhouses and open fields. Third, in the storage step, an agricultural data integration schema and Hadoop HDFS-based storage structure are proposed for large-scale agricultural data. Finally, in the analysis step, the service system performs DTW-based time series classification in consideration of the characteristics of agricultural digital data. Through the DTW-based classification, the accuracy of prediction results is improved by reflecting the characteristics of time series data without any loss. As a future work, we plan to implement the proposed service method and apply it to the smart farm greenhouse for testing and verification.

Line Drawings from 2D Images (이차원 영상의 라인 드로잉)

  • Son, Min-Jung;Lee, Seung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.12
    • /
    • pp.665-682
    • /
    • 2007
  • Line drawing is a widely used style in non-photorealistic rendering because it generates expressive descriptions of object shapes with a set of strokes. Although various techniques for line drawing of 3D objects have been developed, line drawing of 2D images has attracted little attention despite interesting applications, such as image stylization. This paper presents a robust and effective technique for generating line drawings from 2D images. The algorithm consists of three parts; filtering, linking, and stylization. In the filtering process, it constructs a likelihood function that estimates possible positions of lines in an image. In the linking process, line strokes are extracted from the likelihood function using clustering and graph search algorithms. In the stylization process, it generates various kinds of line drawings by applying curve fitting and texture mapping to the extracted line strokes. Experimental results demonstrate that the proposed technique can be applied to the various kinds of line drawings from 2D images with detail control.

P2P query processing method between ontologies in internet environment (인터넷상의 온톨로지간의 P2P 질의처리 방안)

  • Kim, Byung-Gon;Oh, Sung-Kyun
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.239-247
    • /
    • 2009
  • In simple topology in network system, query should be delivered to all linked peers for query processing. This causes waste of transmission band width and throughput of each peer. To overcome this, as well as query processing strategy, efficient routing technique to deliver query to proper peer is needed. For efficient routing, clustering of peers in P2P networks is important. Clustering of P2P network bases on that combines peers that have similar characteristics in same cluster reduces quantity of message in network than assign peer for cluster randomly. In this paper, we propose clustering techniques for ontology based P2P query processing. Similarity measure point, cluster index structure, and query processing steps in ontology based P2P cluster environment are proposed.

  • PDF

2D LiDAR based 3D Pothole Detection System (2차원 라이다 기반 3차원 포트홀 검출 시스템)

  • Kim, Jeong-joo;Kang, Byung-ho;Choi, Su-il
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.989-994
    • /
    • 2017
  • In this paper, we propose a pothole detection system using 2D LiDAR and a pothole detection algorithm. Conventional pothole detection methods can be divided into vibration-based method, 3D reconstruction method, and vision-based method. Proposed pothole detection system uses two inexpensive 2D LiDARs and improves pothole detection performance. Pothole detection algorithm is divided into preprocessing for noise reduction, clustering and line extraction for visualization, and gradient function for pothole decision. By using gradient of distance data function, we check the existence of a pothole and measure the depth and width of the pothole. The pothole detection system is developed using two LiDARs, and the 3D pothole detection performance is shown by detecting a pothole with moving LiDAR system.

Cooperative Sensing Clustering Game for Efficient Channel Exploitation in Cognitive Radio Network (인지무선 네트워크에서 효율적인 채널 사용을 위한 협력센싱 클러스터링 게임)

  • Jang, Sungjeen;Yun, Heesuk;Bae, Insan;Kim, JaeMoung
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • In cognitive radio network (CRN), spectrum sensing is an elementary level of technology for non-interfering to licensed user. Required sample number for spectrum sensing is directly related to the throughput of secondary user and makes the tradeoff between the throughput of secondary user and interference to primary user. Required spectrum sensing sample is derived from required false alarm, detection probability and minimum required SNR of primary user (PU). If we make clustering and minimize the required transmission boundary of secondary user (SU), we can relax the required PU SNR for spectrum sensing because the required SNR for PU signal sensing is related to transmission range of SU. Therefore we can achieve efficient throughput of CRN by minimizing spectrum sensing sample. For this, we design the tradeoff between gain and loss could be obtained from clustering, according to the size of cluster members through game theory and simulation results confirm the effectiveness of the proposed method.

Corrupted Region Restoration based on 2D Tensor Voting (2D 텐서 보팅에 기반 한 손상된 텍스트 영상의 복원 및 분할)

  • Park, Jong-Hyun;Toan, Nguyen Dinh;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.205-210
    • /
    • 2008
  • A new approach is proposed for restoration of corrupted regions and segmentation in natural text images. The challenge is to fill in the corrupted regions on the basis of color feature analysis by second order symmetric stick tensor. It is show how feature analysis can benefit from analyzing features using tensor voting with chromatic and achromatic components. The proposed method is applied to text images corrupted by manifold types of various noises. Firstly, we decompose an image into chromatic and achromatic components to analyze images. Secondly, selected feature vectors are analyzed by second-order symmetric stick tensor. And tensors are redefined by voting information with neighbor voters, while restore the corrupted regions. Lastly, mode estimation and segmentation are performed by adaptive mean shift and separated clustering method respectively. This approach is automatically done, thereby allowing to easily fill-in corrupted regions containing completely different structures and surrounding backgrounds. Applications of proposed method include the restoration of damaged text images; removal of superimposed noises or streaks. We so can see that proposed approach is efficient and robust in terms of restoring and segmenting text images corrupted.

Video Scene Detection using Shot Clustering based on Visual Features (시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Video data comes in the form of the unstructured and the complex structure. As the importance of efficient management and retrieval for video data increases, studies on the video parsing based on the visual features contained in the video contents are researched to reconstruct video data as the meaningful structure. The early studies on video parsing are focused on splitting video data into shots, but detecting the shot boundary defined with the physical boundary does not cosider the semantic association of video data. Recently, studies on structuralizing video shots having the semantic association to the video scene defined with the semantic boundary by utilizing clustering methods are actively progressed. Previous studies on detecting the video scene try to detect video scenes by utilizing clustering algorithms based on the similarity measure between video shots mainly depended on color features. However, the correct identification of a video shot or scene and the detection of the gradual transitions such as dissolve, fade and wipe are difficult because color features of video data contain a noise and are abruptly changed due to the intervention of an unexpected object. In this paper, to solve these problems, we propose the Scene Detector by using Color histogram, corner Edge and Object color histogram (SDCEO) that clusters similar shots organizing same event based on visual features including the color histogram, the corner edge and the object color histogram to detect video scenes. The SDCEO is worthy of notice in a sense that it uses the edge feature with the color feature, and as a result, it effectively detects the gradual transitions as well as the abrupt transitions. The SDCEO consists of the Shot Bound Identifier and the Video Scene Detector. The Shot Bound Identifier is comprised of the Color Histogram Analysis step and the Corner Edge Analysis step. In the Color Histogram Analysis step, SDCEO uses the color histogram feature to organizing shot boundaries. The color histogram, recording the percentage of each quantized color among all pixels in a frame, are chosen for their good performance, as also reported in other work of content-based image and video analysis. To organize shot boundaries, SDCEO joins associated sequential frames into shot boundaries by measuring the similarity of the color histogram between frames. In the Corner Edge Analysis step, SDCEO identifies the final shot boundaries by using the corner edge feature. SDCEO detect associated shot boundaries comparing the corner edge feature between the last frame of previous shot boundary and the first frame of next shot boundary. In the Key-frame Extraction step, SDCEO compares each frame with all frames and measures the similarity by using histogram euclidean distance, and then select the frame the most similar with all frames contained in same shot boundary as the key-frame. Video Scene Detector clusters associated shots organizing same event by utilizing the hierarchical agglomerative clustering method based on the visual features including the color histogram and the object color histogram. After detecting video scenes, SDCEO organizes final video scene by repetitive clustering until the simiarity distance between shot boundaries less than the threshold h. In this paper, we construct the prototype of SDCEO and experiments are carried out with the baseline data that are manually constructed, and the experimental results that the precision of shot boundary detection is 93.3% and the precision of video scene detection is 83.3% are satisfactory.

Two-phase Content-based Image Retrieval Using the Clustering of Feature Vector (특징벡터의 끌러스터링 기법을 통한 2단계 내용기반 이미지검색 시스템)

  • 조정원;최병욱
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.3
    • /
    • pp.171-180
    • /
    • 2003
  • A content-based image retrieval(CBIR) system builds the image database using low-level features such as color, shape and texture and provides similar images that user wants to retrieve when the retrieval request occurs. What the user is interest in is a response time in consideration of the building time to build the index database and the response time to obtain the retrieval results from the query image. In a content-based image retrieval system, the similarity computing time comparing a query with images in database takes the most time in whole response time. In this paper, we propose the two-phase search method with the clustering technique of feature vector in order to minimize the similarity computing time. Experimental results show that this two-phase search method is 2-times faster than the conventional full-search method using original features of ail images in image database, while maintaining the same retrieval relevance as the conventional full-search method. And the proposed method is more effective as the number of images increases.

A Study of SBC Clustering Technology for 3D Environmental Modeling (3차원 환경 모델링을 위한 SBC 클러스터링 기술 연구)

  • Lee, Jun-Yeob;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.167-167
    • /
    • 2017
  • 스마트팜 내부의 3차원 공간의 온도, 습도, 기압, 공기질 분석을 통한 돈사 미세 조절 기술에 대한 연구가 진행 중이다. 해당 특성 중에서 기압을 제외한 환경인자들은 돈사 내의 구조 특성상 위치별로, 시간별로 매우 상이한 변이의 형태를 보인다. 일정 시점을 기준으로 계측 지점 이외의 지점에 대한 환경인자들을 공간적으로 추정하는 기술은 대표적으로 컴퓨터 분석 기술에 의존하고 있다. 시간 복잡도가 매우 높은 CFD(Computer Fluid Dynamics) 방식은 정밀도 측면에서 유리하나, 상응하는 제어 기술/하드웨어 등의 부재로 모델링 결과의 활용도가 낮다고 볼 수 있다. 본 연구에서는 CFD를 수행하는 과정에 있어 실질적으로 유효한 단위로 공간 분해능을 낮추고, 동등한 크기의 세부 공간에 대한 모델링을 병렬적으로 수행하기 위한 방안을 연구하였다. 실험적으로 돈사 환경을 3차원으로 구성하기 위하여, 공기 흡입구, 배출구, 기둥, 덕트 요소를 포함시켰다. 실내 공간을 1차적으로 가로, 세로, 높이방향으로 $3{\times}3{\times}3$ 균등 분배한 후 3차원 행렬로 분할하였다. 각 분할된 행렬에 대한 연산 수행을 위하여 현재까지 대중에 공개된 SBC(Single Board Computer) 중 가장 높은 연산 수행 능력이 있는 Odroid-XU4(Hardkernel, AnYang, Korea) 16식을 병렬 클러스터링 기술로 연동하였다. 하나의 AP당 8개의 코어가 내장되어 있으므로, 총 128개의 코어를 이용하여 동시에 128개의 3D 정방행렬 연산이 가능하도록 구성하였다. 모델링을 위한 수학적 모델로는 실험적으로 Steady turbulent model (Newtonian coefficient)을 이용하였다. 클러스터링을 이용한 병렬 처리의 특성상 균등한 정보량을 동시에 배분해야 하므로 108 ($27{\times}4$)개의 코어를 이용하여 1차적으로 나뉜 공간을 다시 4등분하여 동시에 $12{\times}12{\times}12$에 해당하는 공간 분해능에 대한 처리를 동시에 수행할 수 있도록 하였다. 2단계에 걸쳐 분할한 공간 세그먼트에 대한 클러스터링 연산 수행 결과 초당 15회 정도의 연산을 수행할 수 있었으며, 시간 분해능을 100으로 설정한 경우 약 5초가 수행되었다. 선행적으로 수행하였던 CFD 모델링 (OpenFOAM)과 비교하였을 때 상대적으로 정밀도가 낮은 3차원 모델링 결과를 얻을 수 있었다. 모델링에 소요되는 시간을 비약적으로 경감 시킨 장점을 살려 적정한 공간 분할 기법과 추가로 발생하는 다수의 바운더리 조건을 근사적으로 추정할 수 있는 데이터 마이닝 기술이 보완되어야 할 것이다.

  • PDF