• Title/Summary/Keyword: 2단계 클러스터링

Search Result 72, Processing Time 0.029 seconds

Hierarchical Visualization of the Space of Facial Expressions (얼굴 표정공간의 계층적 가시화)

  • Kim Sung-Ho;Jung Moon-Ryul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.12
    • /
    • pp.726-734
    • /
    • 2004
  • This paper presents a facial animation method that enables the user to select a sequence of facial frames from the facial expression space, whose level of details the user can select hierarchically Our system creates the facial expression space from about 2400 captured facial frames. To represent the state of each expression, we use the distance matrix that represents the distance between pairs of feature points on the face. The shortest trajectories are found by dynamic programming. The space of facial expressions is multidimensional. To navigate this space, we visualize the space of expressions in 2D space by using the multidimensional scaling(MDS). But because there are too many facial expressions to select from, the user faces difficulty in navigating the space. So, we visualize the space hierarchically. To partition the space into a hierarchy of subspaces, we use fuzzy clustering. In the beginning, the system creates about 10 clusters from the space of 2400 facial expressions. Every tine the level increases, the system doubles the number of clusters. The cluster centers are displayed on 2D screen and are used as candidate key frames for key frame animation. The user selects new key frames along the navigation path of the previous level. At the maximum level, the user completes key frame specification. We let animators use the system to create example animations, and evaluate the system based on the results.

Model Creation Algorithm for Multiple Moving Objects Tracking (다중이동물체 추적을 위한 모델생성 알고리즘)

  • 조남형;김하식;이명길;이주신
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.633-637
    • /
    • 2001
  • In this paper, we proposed model creation algorithm for multiple moving objects tracking. The proposed algorithm is divided that the initial model creation step as moving objects are entered into background image and the model reformation step in the moving objects tracking step. In the initial model creation step, the initial model is created by AND operating division image, divided using difference image and clustering method, and edge image of the current image. In the model reformation step, a new model was reformed in the every frame to adapt appearance change of moving objects using Hausdorff Distance and 2D-Logarithmic searching algorithm. We simulated for driving cart in the road. In the result, model was created over 98% in case of irregular approach direction of cars and tracking objects number.

  • PDF

Areal Image Clustering using SOM with 2 Phase Learning (SOM의 2단계학습을 이용한 항공영상 클러스터링)

  • Lee, Kyunghee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.995-998
    • /
    • 2013
  • Aerial imaging is one of the most common and versatile ways of obtaining information from the Earth surface. In this paper, we present an approach by SOM(Self Organization Map) algorithm with 2 phase learning to be applied successfully to aerial images clustering due to its signal-to-noise independency. A comparison with other classical method, such as K-means and traditional SOM, of real-world areal image clustering demonstrates the efficacy of our approach.

  • PDF

Segmentation of Multispectral Brain MRI Based on Histogram (히스토그램에 기반한 다중스펙트럼 뇌 자기공명영상의 분할)

  • 윤옥경;김동휘
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.4
    • /
    • pp.46-54
    • /
    • 2003
  • In this paper, we propose segmentation algorithm for MR brain images using the histogram of T1-weighted, T2-weighted and PD images. Segmentation algorithm is composed of 3 steps. The first step involves the extraction of cerebrum images by ram a cerebrum mask over three input images. In the second step, peak ranges are determined from the histogram of the cerebrum image. In the final step, cerebrum images are segmented using coarse to fine clustering technique. We compare the segmentation result and processing time according to peak ranges. Also compare with the other segmentation methods. The proposed algorithm achieved better segmentation results than the other methods.

  • PDF

Automatic Source Classification Algorithm using Mean-Shift Clustering and stepwise merging in Color Image (컬러영상에서 Mean-Shift 군집화와 단계별 병합 방법을 이용한 자동 원료 선별 알고리즘)

  • Kim, Sang-Jun;Jang, JiHyeon;Ko, ByoungChul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1597-1599
    • /
    • 2015
  • 본 논문에서는 곡물이나 광석 등의 원료들 중에서 양품 및 불량품을 검출하기 위해, Color CCD 카메라로 촬영한 원료영상에서 Mean-Shift 클러스터링 알고리즘과 단계별 병합 방법을 제안하고 있다. 먼저 원료 학습 영상에서 배경을 제거하고 영상 색 분포정도를 기준으로 모폴로지를 이용하여 영상의 전경맵을 얻는다. 전경맵 영상에 대해서 Mean-Shift 군집화 알고리즘을 적용하여 영상을 N개의 군집으로 나누고, 단계별로 위치 근접성, 색상대푯값 유사성을 비교하여 비슷한 군집끼리 통합한다. 이렇게 통합된 원료 객체는 영상채널마다의 연관관계를 반영할 수 있도록 RG/GB/BR의 2차원 컬러분포도로 표현한다. 원료 객체별로 변환된 2차원 컬러 분포도에서 분포의 주성분의 기울기와 타원들을 생성한다. 객체별 분포 타원은 테스트 원료 영상데이터에서 양품과 불량품을 검출하는 임계값이 된다. 본 논문에서 제안한 방법으로 다양한 원료영상에 실험한 결과, 기존 선별방식에 비해 사용자의 인위적 조작이 적고 정확한 원료 선별 결과를 얻을 수 있었다.

A Study on Tag Clustering for Topic Map Generation in Web 2.0 Environment (Web2.0 환경에서의 Topic Map 생성을 위한 Tag Clustering에 관한 연구)

  • Lee, Si-Hwa;Wu, Xiao-Li;Lee, Man-Hyoung;Hwang, Dae-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.525-528
    • /
    • 2007
  • 기존의 웹서비스가 정적이고 수동적인데 반해 최근의 웹 서비스는 점차 동적이고 능동적으로 변화하고 있다. 이러한 웹서비스 변화의 흐름을 잘 반영하는 것이 웹 2.0이다. 웹 2.0에서 대부분의 정보는 사용자에 의해 생산되고, 사용자가 붙인 태그(tag)에 의해 분류되어진다. 그러나 현재 태그에 관한 서비스 및 연구들은 태깅(tagging) 방법에 대한 연구를 비롯해 이를 표현하기 위한 tag cloud에 초점이 맞춰져 진행됨에 따라, 다양한 태그 정보자원 간의 체계와 연결 관계인 지식체계를 제공하지 못하고 있다. 이에 본 논문에서는 체계화된 지식표현을 위해 웹상에 편재되어 있는 학습 관련 리소스(resources) 및 태그들를 수집한다. 이를 사용자가 요청한 검색 키워드와 연관성이 있는 태그 정보들을 맵핑 및 클러스터링하여 최적화된 표현 형식인 토픽 맵(topic map)화하기 위한 시스템을 제안하며, 이 중 토픽 맵 생성을 위한 초기 연구 단계로서, 연관 태그들 간의 맵핑 및 클러스터링을 위한 알고리즘 제시를 중심으로 소개한다.

The Shot Change Detection Using a Hybrid Clustering (하이브리드 클러스터링을 이용한 샷 전환 검출)

  • Lee, Ji-Hyun;Kang, Oh-Hyung;Na, Do-Won;Lee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.635-638
    • /
    • 2005
  • The purpose of video segmentation is to segment video sequence into shots where each shot represents a sequence of frames having the same contents, and then select key frames from each shot for indexing. There are two types of shot changes, abrupt and gradual. The major problem of shot change detection lies on the difficulty of specifying the correct threshold, which determines the performance of shot change detection. As to the clustering approach, the right number of clusters is hard to be found. Different clustering may lead to completely different results. In this thesis, we propose a video segmentation method using a color-X$^2$ intensity histogram-based fuzzy c-means clustering algorithm.

  • PDF

Hierarchical Organization of Embryo Data for Supporting Efficient Search (배아 데이터의 효율적 검색을 위한 계층적 구조화 방법)

  • Won, Jung-Im;Oh, Hyun-Kyo;Jang, Min-Hee;Kim, Sang-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.16-27
    • /
    • 2011
  • Embryo is a very early stage of the development of multicellular organism such as animals and plants. It is an important research target for studying ontogeny because the fundamental body system of multicellular organism is determined during an embryo state. Researchers in the developmental biology have a large volume of embryo image databases for studying embryos and they frequently search for an embryo image efficiently from those databases. Thus, it is crucial to organize databases for their efficient search. Hierarchical clustering methods have been widely used for database organization. However, most of previous algorithms tend to produce a highly skewed tree as a result of clustering because they do not simultaneously consider both the size of a cluster and the number of objects within the cluster. The skewed tree requires much time to be traversed in users' search process. In this paper, we propose a method that effectively organizes a large volume of embryo image data in a balanced tree structure. We first represent embryo image data as a similarity-based graph. Next, we identify clusters by performing a graph partitioning algorithm repeatedly. We check constantly the size of a cluster and the number of objects, and partition clusters whose size is too large or whose number of objects is too high, which prevents clusters from growing too large or having too many objects. We show the superiority of the proposed method by extensive experiments. Moreover, we implement the visualization tool to help users quickly and easily navigate the embryo image database.

Efficient Filter Step of DOT Spatial Join Algorithm (DOT 공간조인 알고리즘의 효율적인 여과단계 처리)

  • Yu, Yong-Hyuk;Back, Hyun;Yoon, Jee-Hee;Lee, Keon-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.39-41
    • /
    • 2000
  • 공간조인 연산은 지리정보시스템의 연산 중 매우 높은 처리비용을 요구하는 연산이다. DOT 공간 색인 기법은 전통적인 데이터베이스 시스템의 주색인 기법을 적용할 수 있으며, 공간객체의 상호 인접성이 유지되도록 Hilbert 값으로 정렬되어 클러스터링 된다. 이러한 특징을 이용한 DOT공간 조인 알고리즘은 적정한 버퍼크기를 유지하는 경우 잘 알려진 R-tree를 이용한 공간조인 알고리즘에 비해 디스크 액세스면에서 유리한 장점이 있으나, 조인가능영역 산출시 많은 양의 공간변환 연산을 필요로 하므로 전체적인 성능이 만족스럽지 못하다. 본 논문은 DOT 공간조인 알고리즘의 성능을 향상시키기 위하여 이러한 공간변환 연사의 횟수를 최소화시킨 효율적인 여과단계처리 방법을 제시하며, 이를 적용한 DOT공간조인 알고리즘과 R-tree 공간조인 알고리즘의 실행시간을 비교 분석하여 DOT 공간조인 알고리즘이 최대 약 2배까지 우수한 성능을 가지고 있음을 보인다.

  • PDF

News Video Shot Boundary Detection using Singular Value Decomposition and Incremental Clustering (특이값 분해와 점증적 클러스터링을 이용한 뉴스 비디오 샷 경계 탐지)

  • Lee, Han-Sung;Im, Young-Hee;Park, Dai-Hee;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.169-177
    • /
    • 2009
  • In this paper, we propose a new shot boundary detection method which is optimized for news video story parsing. This new news shot boundary detection method was designed to satisfy all the following requirements: 1) minimizing the incorrect data in data set for anchor shot detection by improving the recall ratio 2) detecting abrupt cuts and gradual transitions with one single algorithm so as to divide news video into shots with one scan of data set; 3) classifying shots into static or dynamic, therefore, reducing the search space for the subsequent stage of anchor shot detection. The proposed method, based on singular value decomposition with incremental clustering and mercer kernel, has additional desirable features. Applying singular value decomposition, the noise or trivial variations in the video sequence are removed. Therefore, the separability is improved. Mercer kernel improves the possibility of detection of shots which is not separable in input space by mapping data to high dimensional feature space. The experimental results illustrated the superiority of the proposed method with respect to recall criteria and search space reduction for anchor shot detection.