• Title/Summary/Keyword: 2$\times$2 array

Search Result 741, Processing Time 0.03 seconds

Design of Circularly Polarized Array Antenna for 5.8GHz Microwave Wireless Power Transmission (5.8GHz 마이크로파 무선전력전송을 위한 원형 편파 배열 안테나 설계)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.20-25
    • /
    • 2018
  • In this paper, we have designed circularly polarized array antenna for 5.8GHz microwave wireless power transmission. To obtain high antenna gain, we studied a single patch antenna, a $2{\times}1$ array antenna, a $2{\times}2$ array antenna, a $2{\times}4$ array antenna, and a $4{\times}4$ array antenna. Commonly, characteristics of each antenna have a frequency of 5.8 GHz and Right Hand Circular Polarization(RHCP) of circular polarization. Also, the results were obtained with the design to each antenna that the return loss was less than -10dB and the axial ratio was less than 3dB. The gain of the antennas was 6.08dBi for a single patch antenna, 9.69dBi for a $2{\times}1$ array antenna, 12.99dBi for a $2{\times}2$ array antenna, 15.72dBi for a $2{\times}4$ array antenna and 18.39dBi for a $4{\times}4$ array antenna. When the elements of the array antenna were increased, it was confirmed that it increased by about 3dBi.

Effect of the Patch Width on the Radiation Characteristics of a Pin Array Patch Antenna (패치의 폭이 핀 배열 패치 안테나의 방사 특성에 미치는 효과)

  • Yoon, Young-Min;Kim, Tae-Young;Cho, Myung-Ki;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.1
    • /
    • pp.77-83
    • /
    • 2010
  • Radiation characteristics of $5{\times}4$ pin array patch antennas are compared to those of $5{\times}2$ pin array patch antennas for several substrate thicknesses using the computer simulation. Since the number of unit cells of a $5{\times}2$ pin array patch antenna is half of that of a $5{\times}4$ pin array patch antenna, the number of pins used in a $5{\times}2$ pin array patch antenna is half of that in a $5{\times}4$ pin array patch antenna and the patch width of a $5{\times}2$ pin array patch antenna is very small compared to that of a $5{\times}4$ pin array patch antenna. However, the radiation characteristics of a $5{\times}2$ pin array patch antenna are almost similar to those of a $5{\times}4$ pin array patch antenna.

Circularly Rotated Array for Dual Polarized Applicator in Superficial Hyperthermia System

  • Kim, Ki Joon;Choi, Woo Cheol;Yoon, Young Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.20-25
    • /
    • 2015
  • A circularly rotated array for a dual polarized applicator in a superficial hyperthermia system is proposed. The applicator has a wider effective treatment area due to the $180^{\circ}$ phase shift. The dual polarized circularly rotated array (DPCRA) suppresses overheating at the center of the array and helps evenly distribute the heat. This array provides a more effective treatment area than a lattice array when a $2{\times}2$ dual polarized array is fitted to the treatment area. The treatment area is 71.5% of the aperture, whereas the effective treatment areas of the $2{\times}2$ dual polarized lattice array (DPLA) and the single polarized array (SPA) are 57.2% and 38.6% of the same aperture, respectively. The measurement matches the simulation results without blood circulation effects. In a $2{\times}2$ array applicator, the proposed DPCRA has more heat uniformity than the DLA and the SPA.

Study on the Array type antenna of 2×2 (2×2 배열 구조 안테나 특성 연구)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.549-554
    • /
    • 2017
  • In this paper, we studied the design and fabrication of $2{\times}2$ microstrip array antenna at around 5 GHz band.. To improve of frequency properties of antenna, feed microstrip patch antenna was simulated by HFSS(High Frequency Structure Simulator). A $2{\times}2$ array antenna was designed and fabricated by photolithograph on an FR4 substrate (dielectric constant of 4.4 and thickness of 1.6 mm). The fabricated $2{\times}2$ array antenna showed a center frequency, the minimum return loss and bandwidth were 5.3 GHz, -24dB, and 390MHz, respectively.

Design and Implementation of Rectenna Using 2×2 Array Patch Antenna (2×2 배열 패치 안테나 구조를 갖는 렉테나 설계 및 구현)

  • Kim, Sun-Woong;Choi, Dong-You
    • Journal of Information Technology Services
    • /
    • v.13 no.1
    • /
    • pp.135-146
    • /
    • 2014
  • In this paper, an antenna has been proposed for the operation of mobile devices such as Zigbee. The presented rectenna operates at ISM (Industrial Scientific Medical) band of 2.45 GHz and consists of $2{\times}2$ array patch antenna and Villard voltage double rectifier circuit for high conversion efficiency. $2{\times}2$ array patch antenna is fabricated in FR4 substrate having thickness of 1.6mm and dielectric constant of 4.7. The proposed $2{\times}2$ array patch antenna resonates at 2.56GHz with return loss of 38.36dB, VSWR of 1.0244, and its impedance is matched to $50{\Omega}$. The fabricated rectenna has maximum conversion efficiency of 59.8% at an input power lever of 15dBm and load resistance of $500{\Omega}$.

The Design of $4{\times}4$ Microstrip Patch Array Antenna of K-Band for the High Directivity (고지향성 구현을 위한 K-밴드 $4{\times}4$ 마이크로스트립 패치 어레이 안테나의 설계)

  • Lee, Ha-Young;Braunstein, Jeffrey;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1613-1614
    • /
    • 2006
  • In this paper, a $4{\times}4$ rectangular patch array antenna operated at 20 GHz is implemented for the satellite communication. Two $2{\times}2$ subarrays are designed and more efficient $2{\times}2$ subarray is used for the design of $4{\times}4$ patch array. The sixteen patch antennas and microstrip feeding line are printed on the single-layered substrate. The spacing between the array elements is chosen to be $0.736{\lambda}$. HPBW (Half-Power Beam Width) is 17.6 degrees in the E-plane and 18.7 degrees in the H-plane with a gain of 17.2SdBi in the simulation results.

  • PDF

Crossword Game Using Speech Technology (음성기술을 이용한 십자말 게임)

  • Yu, Il-Soo;Kim, Dong-Ju;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.213-218
    • /
    • 2003
  • In this paper, we implement a crossword game, which operate by speech. The CAA (Cross Array Algorithm) produces the crossword array randomly and automatically using an domain-dictionary. For producing the crossword array, we construct seven domain-dictionaries. The crossword game is operated by a mouse and a keyboard and is also operated by speech. For the user interface by speech, we use a speech recognizer and a speech synthesizer and this provide more comfortable interface to the user. The efficiency evaluation of CAA is performed by estimating the processing times of producing the crossword array and the generation ratio of the crossword array. As the results of the CAA's efficiency evaluation, the processing times is about 10ms and the generation ratio of the crossword array is about 50%. Also, the recognition rates were 95.5%, 97.6% and 96.2% for the window sizes of "$7{\times}7$", "$9{\times}9$," and "$11{\times}11$" respectively.}11$" respectively.vely.

A VLSI array implementation of vector-radix 2-D fast DCT (Vector-radix 2차원 고속 DCT의 VLSI 어레이 구현)

  • 강용섬;전흥우;신경욱
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.1
    • /
    • pp.234-243
    • /
    • 1995
  • An arry circuit is designed for parallel computation of vector-radix 2-D discrete cosine transform (VR-FCT) which is a fast algorithm of DCT. By using a 2-D array of processing elements (PEs), the butterfly structure of the VR-FCT can be efficiently implemented with high condurrency and local communication geometry. The proposed implementation features architectural medularity, regularity and locality, so that it is very suitable for VLSI realization. Also, no transposition memory is required. The array core for (8$\times$8) 2-D DCT, which is designed usign ISRC 1.5.mu.m N-Well CMOS technology, consists of 64 PEs arranged in (8$\times$8) 2-D array and contains about 98,000 transistors on an area of 138mm$^{2}$. From simulation results, it is estimated that (8$\times$8) 2-D DCT can be computed in about 0.88 .mu.sec at 50 MHz clock frequency, resulting in the throughput rate of about 72${\times}10^[6}$ pixels per second.

  • PDF

Microstrip 8$\times$2 circularly polarized phased array antenna (마이크로스트립 원형 편파 8$\times$2 위상 배열 안테나)

  • 윤재승;이영주;박위상
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.345-349
    • /
    • 2000
  • A microstrip polarized 8${\times}$2 linear phased array antenna with four 4-bit phase shifters is designed at 10 GHz. The 180$^{\circ}$and 90$^{\circ}$ sections of the phase shifter are of the switched line type, and the rests are of the loaded line type. A 2${\times}$2 sequential sub-array is adopted for a broad axial ratio bandwidth. The construction of the array antenna is of the tile type placing the phase shifters on the same layer containing the feed network. The element spacing is chosen to be 0.45λ$\sub$0/ to exclude the grating lobe. Measurement results show a gain 9.69 dB at broadside and 8.3 dB at the beam-tilt angle of 16$^{\circ}$ by imposing a progressive phase of 90$^{\circ}$.

  • PDF

The Design of $4{\times}4$ Microstrip Patch Array Antenna of K-Band for the High Gain (고이득 구현을 위한 K-밴드 $4{\times}4$ 마이크로스트립 패치 어레이 안테나의 설계)

  • Lee Ha-Young;Braunstein Jeffrey;Kim Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.193-196
    • /
    • 2006
  • In this paper, two $4{\times}4$ rectangular patch array antennas operated at 20 GHz are implemented for the satellite communication. Two $2{\times}2$ sub-arrays are designed and used for the design of $4{\times}4$ patch array. The sixteen patch antennas and microstrip feeding line are printed on the single-layered substrate. The spacing between the array elements is chosen to be $0.736{\lambda}$. The HPBW(Half Power Beam Width) of the $4{\times}4$ microstrip patch array is 17.01 degrees in the E-plane and 17.71 degrees in the H-plane with a gain of 11.6dB in the experimental results. The HPBW of the recessed $4{\times}4$ microstrip patch array is 18.66 degrees in E-plane and 17.12 degrees in the H-plane with a gain of 12.55dB in the experimental results.

  • PDF