• Title/Summary/Keyword: 1g Shaking table tests

Search Result 77, Processing Time 0.03 seconds

An Assessment Study of Seismic Resistance of Two-story Wood-frame Housing by Shaking Table Tests

  • Ni, Chun;Kim, Sang-Yeon;Chen, Haijiang;Lu, Xilin
    • Land and Housing Review
    • /
    • v.3 no.1
    • /
    • pp.79-82
    • /
    • 2012
  • While there exists a relatively large body of technical information for the engineered design of wood-frame buildings to resist seismic ground motions, the quantitative assessment of seismic resistance of conventional houses built by prescriptive requirements is less well understood. Forintek Canada Corp., in collaboration with other research and industry partners, has embarked on a research project to address this topic. This paper will report on the seismic shake table tests of a full-scale wood-frame building. The two-story specimen, $6m{\times}6m$ in plan, was built on the seismic shake table at Tongji University in Shanghai, China, according to Part 9 of the 1995 National Building Code of Canada and shaken uni-directionally in each of the two principal directions. Three different seismic table motions were applied at increasing peak ground motion amplitudes up to 0.40 and 0.50 g. The specimen was repaired after the above sets of seismic table motions, and successive runs were conducted for increased door openings. Measurements included specimen accelerations, displacements and anchorage forces. Static stiffness of the specimen was measured at low force levels, and natural frequencies were measured after each seismic loading stage by applying low-level random excitation. The results presented consist of the capacity spectra of the shake table tests, changes in specimen stiffness and natural frequencies with increasing seismic loading. These results and those from other recent shake table tests elsewhere will be compared with simplified engineering calculations based on codified values of strength, and on that basis preliminary conclusions will be drawn on the adequacy of the current code provisions and design guides in Canada and the USA for conventional wood-frame construction.

Seismic Performance Evaluation of Masonry Walls Retrofitted with Semi-buried Lattice Reinforcement (조적식 구조물의 부분 매입식 격자철근 보강기법의 내진 성능 평가)

  • Kim, Sang Hyo;Choi, Moon Seock;Park, Se Jun;Ahn, Jin Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.88-98
    • /
    • 2011
  • Masonry structure is a style of building which has been widely applied as residential facilities of low and middle stories, commercial and public facilities etc. But it is possible to destroy by loss of adhesive strength or sliding when lateral forces, such as earthquake, occurs. This study proposes a seismic retrofit method for masonry structure and its seismic performance is demonstrated by shaking table test. Two specimens per each shaking direction were made, having out-of-plane(weak axis) and in-plane(strong axis) direction. External load of 1 ton was also applied for each specimen during the test, to model the behavior of reinforced masonry wall. As a result of shaking table tests, it is shown that the specimen applying the proposed seismic retrofit method showed acceptable behaviors in both of Korea building design criteria(0.14g) and USA seismic criteria suggested by IBC(0.4g). However, it was observed that stiffness of the specimen toward out-of-plane was rapidly decreasing when seismic excitations over 0.14g were loaded. In comparison of relative displacements, maximum relative displacement of specimens which were accelerated toward out-of-plane with 0.4g at once was 29~31% of maximum relative displacement when specimens were gradually accelerated from 0.08g to 0.4g, while the maximum relative displacement of specimens accelerated toward in-plane has similar value in both cases. Therefore, it is concluded that the wall accelerated toward out-of-plane is more affected by hair crack or possible fatigues caused by seismic excitation.

Optimization of mix design of micro-concrete for shaking table test

  • Zhou, Ji;Gao, Xin;Liu, Chaofeng
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.215-221
    • /
    • 2022
  • Considering their similar mass densities, an attempt was made to optimize the mix design of micro-concrete that used barite sand as an aggregate by substituting marble powder (5%, 10%, 20%, 30%, 40%, 50%, 70%), clay brick powder (30%, 50%, 70%), and fly ash (30%, 50%, 70%) for the concrete (by mass) to form specimens for shaking table tests. The test results showed that for these three groups of materials, the substitutions had little effect on the density. The barite sand played a decisive role in the density, and the overall density of the specimens reached approximately 2.9 g/cm3. The compressive strength and elastic modulus decreased with an increase in the substitution rates for the three types of materials. Among them, the 28 day compressive strength values of the 40% and 50% marble powder groups were 11.73 MPa and 8.33 MPa, respectively, which were 58.7% and 70.7% lower than the control group, respectively. Their elastic modulus values were 1.33×104 MPa and 1.42×104 MPa, respectively, which were 39.1% and 35% lower than those of the control group, respectively. The 28 day compressive strength values of the 50% and 70% clay brick powder groups were 13.13 MPa and 5.8 MPa, respectively, which were 53.8% and 79.6% lower than the control group, respectively. Their elastic modulus values were 1.54×104 MPa and 1.19×104 MPa, respectively, which were 29.7% and 45.4% lower than those of the control group, respectively. The 28 day compressive strength values of the 50% and 70% fly ash groups were 13.5 MPa and 7.1 MPa, respectively, which were 52.5% and 75% lower than those of the control group, respectively. Their elastic modulus values were 1.36×104 MPa and 0.95×104 MPa, respectively, which were 37.9% and 56.6% lower than those of the control group, respectively. There was a linear relationship between the 28 day compressive strength and elastic modulus, with the correlation coefficient reaching a value higher than 0.88. The test results showed that the model materials met the high density, low compressive strength, and low elastic modulus requirements for shaking table tests, and the test data of the three groups of different alternative materials were compared and analyzed to provide references and assistance for relevant model testers.

Comparison Between Performance of a Sound-Triggered Measurement and an Amplitude-Triggered Measurement in Shaking Table Tests (진동대를 이용한 모바일 진동 계측 기기의 사운드 트리거 계측과 진폭 트리거 계측 성능 비교)

  • Mapungwana, S.T.;Lee, Jong-Ho;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.117-126
    • /
    • 2019
  • Micro-Electro-Mechanical Systems (MEMS) sensors have been widely used in Structural Health Monitoring due to their convenience and lower costs in comparison to conventional sensors. Triggered measurements are relevant in events such as earthquakes because unlike continuous measurements, they only record the structural response once an event happens. This is more cost effective and it makes the data more manageable because only the required measurements from the event are recorded. The most common method of triggering is amplitude triggering. However, lower input amplitudes (less than 0.1g) cannot be triggered by using this method. In this paper, sound triggering was introduced to allow triggered measurements for lower input amplitude values. The performance of the sound triggering and amplitude triggering were compared by a series of shaking-table tests. It was seen that sound-triggering method has a wider frequency (0.5~10Hz) and amplitude (0.01~1.0g) range of measurements. In addition, the sound triggering method performs better than the amplitude triggering method at lower amplitudes. The performance of the amplitude triggering, in terms of the triggering being simultaneous improves at higher input amplitudes.

A Comparative Study on Dynamic Behavior of Soil Containers that Have Different Side Boundary Conditions (측면 경계 조건이 다른 토조들의 동적거동 비교에 관한 연구)

  • Kim, Jin-Man;Ryu, Jeong-Ho;Son, Su-Won;Na, Ho-Young;Son, Jeong-Woong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.107-116
    • /
    • 2011
  • Rigid soil containers (or rigid boxes) are often used for 1g shaking table tests. The rigid boxes, however, do not accurately simulate the amplification of ground acceleration and phase difference of seismic motion in the model ground due to the confinement of shear deformation and the reflection of seismic wave at the box walls. Laminar soil containers (or laminar shear boxes) can simulate the free field motion at convincingly superior accuracy than the rigid ones. In this study, the soft ground is modeled for both types of boxes and is subjected to seismic loading using a 1g shaking table. The comparison of the results using the two types of soil containers illustrates that, in case of the rigid box, the ground acceleration shows non uniform distribution and the phase synchronization of input motion. Whereas, the dynamic behavior of the laminar shear box shows good agreement with the free field behaviors such as the amplification of ground acceleration and the occurrence of phase difference.

A Shaking Table Test for an Re-evaluation of Seismic Fragility of Electrical Cabinet in NPP (원전 전기캐비넷의 지진취약도 재평가를 위한 진동대 실험)

  • Kim, Min-Kyu;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.295-305
    • /
    • 2011
  • In this study, a seismic behavior of electrical cabinet system in Nuclear Power Plants(NPPs) was evaluated by the shaking table test. A 480V Motor Control Centers(MCCs) was selected for the shaking table test, and a real MCC cabinet for the Korea Nuclear Power Plant site was rented by manufactured company. For the shaking table tests, three kinds of seismic input motions were used, which were a US NRC Reg. guide 1.60 design spectrum, a UHS spectrum and PAB 165' floor response spectrum(FRS). Especially, the UHS input motion was selected for an evaluation of structural seismic amplification effects, three directional accelerations were measured at three points outside on the cabinet system and also that of the incabinet response amplification, accelerations were measure at two points which were mounted in electrical equipment such as relay. Seismic amplification effect is determined at the outside and inside of a cabinet as input seismic motion, and compared to the results which are calculated by analytical method based on NUREG/CR-5203.

Dynamic Analysis of Gravity Quay Wall Considering Development of Excess Pore Pressure in Backfill Soil (과잉간극수압 발생을 고려한 중력식 안벽구조물의 동적해석)

  • Ryu, Moo-Sung;Hwang, Jai-Ik;Kim, Sung-Ryul
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.39-47
    • /
    • 2010
  • In this paper, a total stress analysis method for gravity quay walls is suggested. The method can evaluate the displacement of the quay walls considering the effect of excess pore pressure developed in backfill soils. This method changes the stiffness of backfill soils according to the expected magnitude of the excess pore pressure. For practical application, evaluation methods are suggested for determining the excess pore pressure ratio developed in the backfill soils and the backfill stiffness that corresponds to the excess pore pressure ratio. This method is important in practical applications because the displacement of the quay walls can be evaluated by using only the basic input properties in the total stress analysis. The applicability of the suggested method was verified by comparing the results of the analysis with the results of 1-g shaking table tests. From the comparison, it was found that the calculated displacements from the suggested method showed good agreement with the measured displacements of the quay walls. It was also found that the excess pore pressure in backfill soils is a governing influence on the dynamic behavior of quay walls.

A Shaking Table Test for Equipment Isolation in the NPP (II): FPS (원전기기의 면진을 위한 진동대 실험 II : FPS)

  • Kim, Min-Kyu;ZChoun, Young-Sun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.79-89
    • /
    • 2004
  • This paper presents the results of experimental studies on the equipment isolation effect in the nuclear containment. For this purpose, shaking table tests were performed. The purpose of this study is enhancement of seismic safety of equipment in the Nuclear Power Plant. The isolation system, known as Friction Pendulum System (FPS), combines the concepts of sliding bearings and pendulum motion was selected. Peak ground acceleration, bidirectional motion, effect of vertical motion and frequency contents of selected earthquake motions were considered. As a result, these are founded that the vertical motion of seismic wave affect to the base isolation and the isolation effect decreased in case of near fault earthquake motion.

The Experimental Study on Seismic Capacity of 154 kV & 345 kV Main Transformer Bushings (154 kV 및 345 kV 주변압기 부싱의 내진성능 시험 연구)

  • Hwang, Kyeong Min;Ham, Kyung Won;Kim, Gyeong Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.87-94
    • /
    • 2018
  • In this study, seismic performance of bushings and their connection parts was analyzed by performing shaking table tests for various types of bushings widely used as auxiliary equipment of main transformers in domestic substations. As a result of the seismic tests of five types of 154 kV bushings according to the manufacturers, all the bushings secured the structural integrity even at the acceleration of 1.4 g and it was found that leakage of insulating oil didn't occur. Also, the average acceleration amplification rate at the upper part of the bushings was about 2.5 to 3.0 times higher than the lower one. On the other hand, when a representative 345 kV bushing was subjected to the seismic test, the structural integrity was secured even at 1.0 g acceleration similar to the design earthquake load level, but in this test, leakage of insulating oil occurred. However, when a stiffener restricting the connection of the bushing is installed in the same 345 kV bushing, the displacement of the bushing connection is controlled and the stiffener prevent the oil from leaking even at the acceleration of the designed seismic level.

Influence of Backfill Condition on Force Components of Gravity Walls During Earthquakes (지진시 배면지반 조건이 중력식 안벽의 하중성분에 미치는 영향)

  • Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • During earthquake, force components acting on quay walls consist of inertia force, earth pressure and water pressure. The earth pressure is largely influenced by the backfill condition such as soil density and the installation of gravel backfill. Therefore, shaking table tests were performed by using four different model sections, which were designed by varying the soil density and the backfill materials. The magnitude and the phase of force components acting on quay wall were analyzed. Test results showed that the gravel backfill and the soil compaction were effective to reduce the excess pore pressure in backfill and the magnitude and phase of backfill thrust were much influenced by the excess pore pressure in backfill. When the input acceleration was 0.10g, the average ratios of the inertia force, the front dynamic water force and the thrust to the total force were $64\%,\;21\%\;and\;16\%$, respectively. As the excess pore pressure increased, the ratio of the thrust to the total force increased.