• 제목/요약/키워드: 1DOF

검색결과 468건 처리시간 0.031초

원격 중재시술용 마스터장치에 대한 의료진 요구분석 및 이를 반영한 메커니즘 설계 (Physicians' Requirement Analysis Based Design of the Master Device Mechanism for Teleoperated Interventional Robotic System)

  • 우현수;조장호;이혁진
    • 제어로봇시스템학회논문지
    • /
    • 제22권8호
    • /
    • pp.603-609
    • /
    • 2016
  • This paper presents an optimally designed master device mechanism for teleoperated interventional robotic system. The interventional procedures using the teleoperated robotic system and the physicians' requirements are summarized. The master device should implement 5-DOF motion including 2-DOF translational motion for the entry position control, 2-DOF rotational motion for the orientation control, and 1- DOF translational motion for needle insertion. The handle assembly includes a 1-DOF translational mechanism for needle insertion and buttons for operation mode selection. The mechanisms for the 2-DOF translational motion and the 2-DOF rotational motion are designed using motors and brakes based on the various mechanisms to satisfy all the above requirements, respectively. Absolute position sensors are adopted to implement automatic initial positioning and orientation matching at the first step of needle insertion.

저자유도 평면 병렬형 기구의 강성 해석 (Stiffness Analysis of a Low-DOF Planar Parallel Manipulator)

  • 김한성
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.79-88
    • /
    • 2009
  • This paper presents the analytical stiffness analysis method for a low-DOF planar parallel manipulator. An n-DOF (n<3) planar parallel manipulator to which 1- or 2-DOF serial mechanism is connected in series may be used as a positioning device in planar tasks requring high payload and high speed. Differently from a 3-DOF planar parallel manipulator, an n-DOF planar parallel counterpart may be subject to constraint forces as well as actuation forces. Using the theory of reciprocal screws, the planar stiffness is modeled such that the moving platform is supported by three springs related to the reciprocal screws of actuations (n) and constraints (3-n). Then, the spring constants can be precisely determined by modeling the compliances of joints and links in serial chains. Finally, the stiffness of two kinds of 2-DOF planar parallel manipulators with simple and complex springs is analyzed. In order to show the effectiveness of the suggested method, the results of analytical stiffness analysis are compared to those of numerical stiffness analysis by using ADAMS.

외란 제거 제어기의 실제적인 설계 및 구현 방법 (Practical Design and Implementation Methodology for Disturbance Rejection Controller)

  • 여희주
    • 한국산학기술학회논문지
    • /
    • 제6권1호
    • /
    • pp.37-47
    • /
    • 2005
  • 본 논문은 외란 제거 제어기의 실제적인 설계와 구현방법을 제안한다. 2 DOF 구조에서는 외란 제거의 성능은 순 방향 루프 제어기의 고 이득 없이 개선될 수 있다. 그러나, 2 DOF의 설계 방법이 2 DOF 수학적인 이론에 근거하기 때문에 다양한 응용 분야의 사용이 쉽지 않았다. 외란 관측기(Disturbance Observer, DOB)는 간단하지만, 매우 효과적인 2 DOF 제어기이다. 이 논문에서 기본적인 DOB 특성부터 설계와 구현의 기술적인 방법까지 실제적인 문제를 다룬다. 또한 실질적인 방법에 의하여 모델링하는 방법과 그 예를 설명하였다. 제안한 방법은 두 가지의 선형 모터 시스템으로 유용함을 증명하였다.

  • PDF

Dubins 곡선을 이용한 항공기 3자유도 질점 모델의 3차원 경로계획 및 유도 (3-Dimensional Path Planning and Guidance using the Dubins Curve for an 3-DOF Point-mass Aircraft Model)

  • 오수헌;하철수;강승은;목지현;고상호;이용원
    • 한국항공운항학회지
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper, we integrate three degree of freedom(3DOF) point-mass model for aircraft and three-dimensional path generation algorithms using dubins curve and nonlinear path tracking law. Through this integration, we apply the path generation algorithm to the path planning, and verify tracking performance and feasibility of using the aircraft 3DOF point-mass model for air traffic management. The accuracy of modeling 6DOF aircraft is more accurate than that of 3DOF model, but the complexity of the calculation would be raised, in turn the rate of computation is more likely to be slow due to the increase of degree of freedom. These obstacles make the 6DOF model difficult to be applied to simulation requiring real-time path planning. Therefore, the 3DOF point-mass model is also sufficient for simulation, and real-time path planning is possible because complexity can be reduced, compared to those of the 6DOF. Dubins curve used for generating the optimal path has advantage of being directly available to apply path planning. However, we use the algorithm which extends 2D path to 3D path since dubins curve handles the two dimensional path problems. Control law for the path tracking uses the nonlinear path tracking laws. Then we present these concomitant simulation results.

다자유도 수동식 중력보상장치 기반의 6자유도 산업용 로봇 (6 DOF Industrial Robot Based on Multi-DOF Counterbalance Mechanism)

  • 안국현;송재복
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.11-18
    • /
    • 2017
  • Static balance of an articulated robot arm at various configurations requires a torque compensating for the gravitational torque of each joint due to the robot mass. Such compensation torque can be provided by a spring-based counterbalance mechanism. However, simple installation of a counterbalance mechanism at each pitch joint does not work because the gravitational torque at each joint is dependent on other joints. In this paper, a 6 DOF industrial robot arm based on the parallelogram for multi-DOF counterbalancing is proposed to cope with this problem. Two passive counterbalance mechanisms are applied to pitch joints, which reduces the required torque at each joint by compensating the gravitational torque. The performance of this mechanism is evaluated experimentally.

Mechanism and Motion of New Biped Leg Machine

  • Lim, Hun-Ok;Ogura, Yu;Takanishi, Atsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1922-1927
    • /
    • 2005
  • This paper describes the mechanism of a new biped machine capable of doing human-robot cooperation work. The biped machine, WABIAN-2 is made of two seven degrees of freedom (DOF) legs, a two DOF waist and no DOF trunk. Its leg system consists of two three DOF ankles, two one DOF knees and two three DOF hips to deal with various walk motions. Its height is about 1.2[m], and its weight is 40[kg]. It is designed with large movable range as a human. Also, a knee stretch walk pattern generation for the biped machine to perform natural walk like a human is discussed in this paper. Its leg motion is compensated by using the motion of its waist. Basic knee stretch walk experiments using WABIAN-2 are conducted on the plane, and the validity of its mechanism and walk pattern generator is verified.

  • PDF

속도추정 기반의 2자유도 도립진자의 안정화를 위한 입력보상 방식의 분산 신경망 제어기에 관한 실험적 연구 (Experimental Studies on Decentralized Neural Networks Using Reference Compensation Technique For Controlling 2-DOF Inverted Pendulum Based on Velocity Estimation)

  • 조현택;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.341-349
    • /
    • 2004
  • In this paper, the decentralized neural network control of the reference compensation technique is proposed to control a 2-DOF inverted pendulum on an x-y plane. The cart with the 2-DOF inverted pendulum moves on the x-y plane and the 2-DOF inverted pendulum rotates freely on the x-y axis. Since the 2-DOF inverted pendulum is divided into two 1-DOF inverted pendulums, the decentralized neural network control is applied not only to balance the angle of pendulum, but also to control the position tracking of the cart. Especially, a circular trajectory tracking is tested for position tracking control of the cart while maintaining the angle of the pendulum. Experimental results show that position control of the inverted pendulum system is successful.

3자유도 병렬형 마이크로 로봇 설계 (Design of 3 DOF Parallel Micro Robot)

  • 나흥열;이병주;서일홍;김희국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.429-429
    • /
    • 2000
  • Micro positioning mechanism is the key technology in many fields, such as scanning electron microscopy (SEM), x-ray lithography, mask alignment and micro-machining. In the paper, a 3DOF parallel-type micro-positioning mechanism is proposed. This mechanism uses piezo-actuators and Flexure hinge to control x, y and $\theta$ motion. It is shown both analytically and numerically that 2 DOF flexure hinge model was better precision than 1 DOF flexure hinge design.

  • PDF

Compact 3-DOF Mobile Microrobot for Mirco/Nano Manipulation

  • Kim, Taesung;Park, Jungyul;Kim, Deok-Ho;Lee, Kyo-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.64.3-64
    • /
    • 2002
  • $\textbullet$ Introduction to 3-Dimensional Nanorobotic Manipulation System $\textbullet$ Concept Design and Operating Principle $\textbullet$ Analytic Model for target System $\textbullet$ Fabrication and Experimental Setup of 3-DOF Mobile Microrobot $\textbullet$ Experimental Works or 3-DOF Mobile Microrobot

  • PDF

Improvements of Performance of Multi-DOF Spherical Motor by Double Air-gap Feature

  • Lee, Ho-Joon;Park, Hyun-Jong;Won, Sung-Hong;Ryu, Gwang-Hyun;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.90-96
    • /
    • 2013
  • As the need of electric motor is increased rapidly throughout our society, the various application fields are created and the service market called robot gets expanded as well as the existing industrial market. Out of those, the joint systems such as humanoid that is servo actuator for position control or all fields which require multi-degree of freedom (multi-DOF) require the development of innovative actuator. It is multi-DOF spherical motor that can replace the existing system in multi-DOF operating system. But, multi-DOF spherical motor that has been researched up to date is at the stage which is insufficient in performance or mechanical practicality yet. Thus, first of all the research results and limitation of the previously-researched guide frame-type spherical motors were analyzed and then the feature of double air-gap spherical motor which was devised to complement that was studied. The double air-gap multi-DOF spherical motor is very suitable spherical motor for system applying which requires the multi-DOF operation due to its simple structure that does not require other guide frame as well as performance improvement due to its special shape which has two air-gaps. So, the validity of the study was verified by designing and producing it with 3D-FEM through the exclusive jig for multi-DOF spherical motor.