• Title/Summary/Keyword: 1DOF

Search Result 469, Processing Time 0.025 seconds

The Robot Inverse Calibration Using a Pi-Sigma Neural Networks (Pi-Sigma 신경 회로망을 이용한 로봇의 역 보정)

  • Jeong, Jae Won;Kim, Soo Hyun;Kwak, Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.86-94
    • /
    • 1997
  • This paper proposes the robot inverse calibration method using a neural networks. A high-order networks called Pi-Sigma networks has been used. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the diff- erence of joint variables only between measuring value and analytic value about the desired pose(position, orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness, the SCARA type direct drive robot(4-DOF) and anthropomorphic robot(6-DOF) are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from .+-. 5 .deg. to .+-. 0.1 .deg. .

  • PDF

Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads by Proportional Transformation of Loads (비례하중변환법의 등가정하중을 이용한 비선형 거동을 하는 구조물의 최적설계)

  • Park Ki-Jong;Kwon Yong-Deok;Song Kee-Nam;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.66-75
    • /
    • 2006
  • Nonlinear response structural optimization using equivalent static loads (NROESL) has been proposed. Nonlinear response optimization is solved by sequential linear response optimization with equivalent static loads which are generated from the nonlinear responses and linear stiffness matrix. The linear stiffness matrix should be obtained in NROESL, and this process can be fairly difficult for some applications. Proportional transformation of loads (PTL) is proposed to overcome the difficulties. Equivalent static loads are obtained by PTL. It is the same as NROESL except for the process of calculating equivalent static loads. PTL is developed for large-scale probems. First, linear and nonlinear responses are evaluated from linear and nonlinear analyses, respectively. At a DOF of the finite element method, the ratio of the two responses is calculated and an equivalent static load is made by multiplying the ratio and the loads for linear analysis. Therefore, the mumber of the equivalent static loads is as many as that of DOF's and an equivalent static load is used with the reponse for the corresponding DOF in the optimization process. All the equivalent static loads are used as multiple loading conditions during linear response optimization. The process iterates until it converges. Examples are solved by using the proposed method and the results are compared with conventional methods.

Dimensional analysis of base-isolated buildings to near-fault pulses

  • Istrati, Denis;Spyrakos, Constantine C.;Asteris, Panagiotis G.;Panou-Papatheodorou, Eleni
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.33-47
    • /
    • 2020
  • In this paper the dynamic behavior of an isolated building subjected to idealized near-fault pulses is investigated. The building is represented with a simple 2-DOF model. Both linear and non-linear behavior of the isolation system is considered. Using dimensional analysis, in conjunction with closed form mathematical idealized pulses, appropriate dimensionless parameters are defined and self-similar curves are plotted on dimensionless graphs, based on which various conclusions are reached. In the linear case, the role of viscous damping is examined in detail and the existence of an optimum value of damping along with its significant variation with the number of half-cycles is shown. In the nonlinear case, where the behavior of the building depends on the amplitude of the excitation, the benefits of dimensional analysis are evident since the influence of the dimensionless 𝚷-terms is easily examined. Special consideration is given to the normalized strength of the non-linear isolation system that appears to play a complex role which greatly affects the response of the 2-DOF. In the last part of the paper, a comparison of the responses to idealized pulses between a linear fixed-base SDOF and the respective isolated 2-DOF with both linear and non-linear damping is conducted and it is shown that, under certain values of the superstructure and isolation system characteristics, the use of an isolation system can amplify both the normalized acceleration and displacement of the superstructure.

Leg Structure based on Counterbalance Mechanism for Environmental Adaptive Robot (환경 적응형 로봇의 기계식 중력보상 기반 다리 구조)

  • Park, Hui-Chang;Oh, Jang-Seok;Cho, Yong-Jun;Yun, Hae-Yong;Hong, Hyung-Gil;Kang, Min-Su;Park, Kwan-Hyung;Song, Jae-Bok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.9-18
    • /
    • 2022
  • As the COVID-19 continues, the demand for robotic technology that can be applied in face-to-face tasks such as delivery and transportation, is increasing. Although these technologies have been developed and applied in various industries, the robots can only be operated in a tidy indoor environment and have limitations in terms of payload. To overcome these problems, we developed a 2 degree of freedom(DOF) environmental adaptive robot leg with a double 1-DOF counterbalance mechanism (CBM) based on wire roller. The double 1-DOF CBM is applied to the two revolute joints of the proposed robot leg to compensate for the weight of the mobile robot platform and part of the payload. In addition, the link of the robot leg is designed in a parallelogram structure based on a belt pulley to enable efficient control of the mobile platform. In this study, we propose the principle and structure of the CBM that is suitable for the robot leg, and design of the counterbalance robot leg module for the environment-adaptive control. Further, we verify the performance of the proposed counterbalance robot leg by using dynamic simulations and experiments.

Store Separation Analysis of Flow Angularity Wind Tunnel Test Technique using CFD (1) (CFD를 활용한 Flow Angularity 풍동시험기법의 외장분리 해석(1))

  • Son, Chang-Hyeon;Seo, Sung-Eun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.10-20
    • /
    • 2017
  • This study presents the feasibility of CFD(computational fluid dynamic) analysis using the flow angularity wind tunnel test technique. The CFD analyzed data by the flow angularity technique has been constructed as the database to get store trajectories by 6-DOF simulation. The database has been checked out store aerodynamic coefficients by the analyses at each position under wing. After that process, the simulated trajectories by database have been compared with the store trajectories by CTS(Captive Trajectory Simulation) of CFD. The trajectories provided by the database of flow angularity have a good agreement with the store trajectories by CFD.

Exact External Torque Sensing System for Flexible-Joint Robot: Kalman Filter Estimation with Random-Walk Model (유연관절로봇을 위한 정확한 외부토크 측정시스템 개발: 랜덤워크모델을 이용한 칼만필터 기반 추정)

  • Park, Young-Jin;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • In this paper, an external torque estimation problem in one-degree-of-freedom (1-DOF) flexible-joint robot equipped with a joint-torque sensor is revisited. Since a sensor torque from the joint-torque sensor is distorted by two dynamics having a spring connection, i.e., motor dynamics and link dynamics of a flexible-joint robot, a model-based estimation, rather than a simple linear spring model, should be required to extract external torques accurately. In this paper, an external torque estimation algorithm for a 1-DOF flexible-joint robot is proposed. This algorithm estimates both an actuating motor torque from the motor dynamics and an external link torque from the link dynamics simultaneously by utilizing the flexible-joint robot model and the Kalman filter estimation based on random-walk model. The basic structure of the proposed algorithm is explained, and the performance is investigated through a custom-designed experimental testbed for a vertical situation under gravity.

Design of a Novel 1 DOF Hand Rehabilitation Robot for Activities of Daily Living (ADL) Training of Stroke Patients (뇌졸중 환자의 일상생활 동작 훈련을 위한 1자유도 손 재활 로봇 설계)

  • Gu, Gwang-Min;Chang, Pyung-Hun;Sohn, Min-Kyun;Shin, Ji-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.833-839
    • /
    • 2010
  • In this paper, a novel 1 DOF hand rehabilitation robot is proposed in consideration of ADL training for stroke patients. To perform several ADL trainings, the proposed robot can move the thumb part and the part of 4 fingers simultaneously and realize the full ROM (Range of Motion) in grasp. Based on these characteristics, the proposed robot realizes several types of grasp such as cylindrical grasp, lateral grasp, and pinch grasp by using a passive revolute joint that can change the thumb movement direction. The movement of the thumb is driven by a cable mechanism and the part of 4 fingers is moved by a four-bar linkage mechanism.

An Enhanced Power Sharing Strategy for Islanded Microgrids Considering Impedance Matching for Both Real and Reactive Power

  • Lin, Liaoyuan;Guo, Qian;Bai, Zhihong;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.282-293
    • /
    • 2017
  • There exists a strong coupling between real and reactive power owing to the complex impedances in droop based islanded microgrids (MGs). The existing virtual impedance methods consider improvements of the impedance matching for sharing of the voltage controlled power (VCP) (reactive power for Q-V droop, and real power for P-V droop), which yields a 1-DOF (degree of freedom) tunable virtual impedance. However, a weak impedance matching for sharing of the frequency controlled power (FCP) (real power for $P-{\omega}$ droop, and reactive power for $Q-{\omega}$ droop) may result in FCP overshoots and even oscillations during load transients. This in turn results in VCP oscillations due to the strong coupling. In this paper, a 2-DOF tunable adaptive virtual impedance method considering impedance matching for both real and reactive power (IM-PQ) is proposed to improve the power sharing performance of MGs. The dynamic response is promoted by suppressing the coupled power oscillations and power overshoots while realizing accurate power sharing. In addition, the proposed power sharing controller has a better parametric adaptability. The stability and dynamic performances are analyzed with a small-signal state-space model. Simulation and experimental results are presented to investigate the validity of the proposed scheme.

Conceptual Design Study of Two-Stage Hypersonic Scramjet Vehicle (2단 초음속 스크램제트 비행체의 개념설계 연구)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Yang, Soo-Seok;Park, Chul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.16-24
    • /
    • 2012
  • In this study, two-stage hypersonic scramjet vehicle was designed for the flight condition of Mach number 6. In order to launch at sea level, two stage concept was applied. The first stage of the vehicle is solid rocket-powered and is mounted under the second stage. The second stage is powered by scramjet propulsion system and gas wings. The suggested mission scenario is to deliver 0.2 ton payload to the range of 2,000 km. For the first step of conceptual design, trajectory of air vehicle was calculated by 3-DOF trajectory code. Based on the result of trajectory code, scramjet engine design and mass estimation were performed by non-equilibrium nozzle flow code and NASA's HASA model, respectively. In order to find best solution, all steps of designing process was iterated until they was reached.

Comparison of Acceleration of Vibration Isolator and Accelerometer Attached Vibration Isolator Using Numerical Analysis (수치 해석을 이용하여 제진대와 제진대에 부착된 가속도계의 가속도 비교)

  • Shin, Dong Ho;Lee, Jung Woo;Oh, Jae-Eung;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • The process of producing high precision and light weight product is always exposed to impact load or shock. Because of this, isolator device is required. To measure the response of the isolator, accelerometer is practically used. However, the measured response of the accelerometer is different to the response of the isolator. To predict the response of the accelerometer and the isolator, 2-DOF damped system with an input shock is modeled using numerical analysis. 1-DOF damped system with a base excitation is also used to predict the response of the isolator. The mass ratio, damping ratio, and natural frequency ratio are then varied. The predicted responses from the two modeling approaches are compared and large errors are found.