Link-16은 미 해군 및 공군, NATO에 합동 상호운용성을 제공하는 데이터링크로 국내 무기체계에서도 운용되고 있다. 현재 Link-16 운용을 위한 시험환경, 전술모의훈련 및 상호운용성 검증 시험은 해외 SW 및 도구를 통해 전적으로 의존하고 있다. 따라서 Link-16 기반의 운용환경시험 도구의 개발이 필요하다. 본 논문에서는 Link-16 해외도구 기능 분석을 통해 Link-16 네트워크 운용성능분석 시뮬레이터를 개발하였다. 또한 연동을 위한 SIMPLE 표준 인터페이스를 구현하였다. Link-16 네트워크 운용성능분석을 위한 기능모델은 사전분석, 실시간 운용분석, 사후분석 기능모델로 구성된다. 각 기능모델에 대한 시험은 해외 SW 및 도구와 SIMPLE 연동을 통해서 수행하였다. Link-16 네트워크 운용성능분석 시뮬레이터를 통해 해외 SW를 대체하게 된다면 우리 군에 맞는 전술훈련 및 네트워크 운용성능분석, 운용(시나리오)검증을 수행할 수 있을 것이다.
본 논문에서는 경제시계열 데이타중에 하나인 환율데이타(Yen/Dollar)의 장기기억성과 정답율을 조사했다. 통상 단기 기억성을 가진 대표적 모델 AR 모델로 부터 생성되는 시계열에는 두종류의 프랙탈차원이 존재하는 경우가 많다. 두차원으로 분리되는 샘플 간격을 $k^{crossover}$라고 한다면, 통계모델에서K < $k^{crossover}$일때의 프랙탈차원을 $D_1$, K > $k^{crossover}$일때의 프랙차원을 $D_2$라고 한다면 $ D_1이면서 $D_2\cong2$ 인 관계를 가진다. 그러나 일본경제평균등 실제의 시계열에서는 이것에 반대되는 결과가 나타났다. 그 한 예로써 환율데이타에서는 $D_1>D_2$라는 관계를 가진다는 것을 알았다. 이것은 데이타 사이의 시간 간격이 멀어지는데 오히려 상관은 강해지는 현상을 나타내는 것이다. 환율 시계열을 뉴럴네트워크를 이용해서 예측한 결과, 예측오차로부터 얻어진 지수(指數) $\beta$와 D가 프랙탈성질을 가진 비선형 모델로 부터 구한 관계식 $\beta$=2-2D을 정확히 만족 시키는 것을 확인했다. 그리고 프랙탈차원의 차이가 정답율에서도 나타남을 확인했다.
4 차산업혁명의 발달은 전 세계가 건강한 삶에 관련된 스마트시티 및 맞춤형 치료에 큰 관심을 갖게 하였고, 특히 기계학습 기술은 암을 극복하기 위한 유전체 기반의 정밀 의학 연구에 널리 활용되고 있어 암환자의 예후 예측 및 예후에 따른 맞춤형 치료 전략 수립 등을 가능케하였다. 하지만 암 예후 예측 연구에 주로 사용되는 유전자 발현량 데이터는 약 17,000 개의 유전자를 갖는 반면에 샘플의 수가 200 여개 밖에 없는 문제를 안고 있어, 예후 예측을 위한 신경망 모델의 일반화를 어렵게 한다. 이러한 문제를 해결하기 위해 본 연구에서는 고차원의 유전자 발현량 데이터를 신경망 모델이 효과적으로 학습할 수 있도록 2D 이미지로 표현하는 기법을 제안한다. 길이 17,000 인 1 차원 유전자 벡터를 64×64 크기의 2 차원 이미지로 사상하여 입력크기를 압축하였다. 2 차원 평면 상의 유전자 좌표를 구하기 위해 유전자 네트워크 데이터와 Node2Vec 이 활용되었고, 이미지 기반의 암 예후 예측을 수행하기 위해 합성곱 신경망 모델을 사용하였다. 제안하는 기법을 정확하게 평가하기 위해 이중 교차 검증 및 무작위 탐색 기법으로 모델 선택 및 평가 작업을 수행하였고, 그 결과로 베이스라인 모델인 고차원의 유전자 벡터를 입력 받는 다층 퍼셉트론 모델보다 더 높은 예측 정확도를 보여주는 것을 확인하였다.
국방 시뮬레이션 소프트웨어 개발 시 급변하는 요구사항과 반복적인 구현에 빠르게 대처하기 위해 플러그인 기반의 개발프레임워크가 사용되어왔다. 그러나 개발된 소프트웨어는 내부 컴포넌트의 재활용성은 증대되었으나, 수많은 노드가 연결되는 분산 시뮬레이션 환경에는 적합하지 못했다. 이에 기존의 개발된 데이터 모델인 NOM을 기반으로 객체 간 통신이 가능하고, 분산 환경에서 노드의 확장이 유연한 통신 미들웨어인 nComm+를 제안한다.
본 논문에서는 RSS(Received Signal Strength) 기반 무선 센서네트워크에서의 거리 식별코드를 이용한 거리측정 알고리즘(LAtu)을 제안하고 이를 기반으로 위치인식시스템을 설계 및 구현하였다. 또한 제안한 거리측정 알고리즘의 Ranging 정확도 성능과, 제안한 거리측정 알고리즘을 적용해서 개발한 위치인식시스템(System(LAtu))의 위치측정 오차 성능을 실제 위치인식 실험을 통해 IEEE 802.15.4 표준규격의 채널모델(LAieee)을 적용한 위치인식 시스템(System(LAieee))과 비교분석하였다. 성능분석의 결과, Ranging 정확도의 성능은 이동모듈과 비콘모듈간의 거리($D_{MM-BM}$)가 2m의 경우는 LAtu가 IEEE 802.15.4 표준규격의 채널모델(LAieee) 보다 34%정도 더 우수하였고, $D_{MM-BM}$가 5m 이상인 경우에서도 LAtu가 LAieee 보다 평균 5% 정도 더 정확하였다. System(LAtu)의 위치측정 오차 성능은 System(LAieee)에 비해 강당에서 1cm, 강의실에서 4cm 정도로 근소하게 낮았다.
본 연구는 자율운항 선박의 연료 계통 펌프와 청정기를 대상으로 고장을 진단 사례를 제시하였다. 계측된 신호의 시간종속성을 반영한 심층학습(Deep learning) 알고리즘 적용 절차를 구성하고, 장비의 정상 운전상태와 고장 상태에서 계측한 진동 신호를 고장 패턴 학습에 사용하였다. 특히, 진동 신호에 내포된 열화의 시간 종속성을 반영할 수 있는 방법을 찾고자 하였으며, 슬라이딩 윈도우 연산 과정을 가진 Conv1D를 이용하여고장의 시간 종속성을 반영하였다. 또한 계측된 신호의 차수를 2차원에서 3차원으로 확장하여 시간 영역의 특징을 반영할 수 있는 데이터 전처리과정을 고안하였다. Conv1D 알고리즘의 적층과 변수를 결정하는 과정에서 그리드 탐색 기법을 사용하여 초매개변수의 최적 값을 결정하였다. 마지막으로 제안한 데이터 전처리 방법과 시계열 데이터의 시간 종속성을 반영한 Conv1D 모델이 이상 감지 및 고장 진단에 타당성이 있음을 확인하였다.
본 연구는 GIS를 이용하여 아파트 단지의 UHF대역의 전파장애에 대한 예측모델을 제시한다. 전파예측모델은 기지국 및 중계기 위치설계와 전파음영지역 결정 등 무선네트워크 서비스에 결정적으로 활용된다 기존의 전파예측모델은 한국지형요소나 3차원 공간기술이 반영되지 않고 외국지형기반의 2차원적인 접근으로 개발되어 있다. 특히 많은 사람이 거주하는 아파트단지에 대해서는 고려가 되어 있지 않은 실정이며, 마치 아파트 단지가 일반 건물로 취급되어 전파환경 요소로 분류되지 않은 상태이다. 그리고 전파관리자가 기존 전파 예측모델을 이용한 무선네트워크 설계 및 운용등에 있어 정확한 의사결정지원에 어려움이 많다. 본 연구는 이러한 한계와 문제점을 해결하기 위해서 아파트 단지의 전파에 대한 영향을 3차원 공간밀집, 건물높이, 전파의 전송방향에 대한 건물배치등 3가지 요소로 분류하고 GIS 도구로 그 요소들을 분석하였다. 그 결과로 상관과 회귀분석등 정량적인 방법으로 평가하여 아파트 전파예측모델(GARP)을 개발하여 다음의 결과를 얻었다. 첫째, 아파트 단지가 UHF 대역의 전파에 대한 영향은 전파진행방향성이 57%, 공간밀집이 30%, 건물높이가 13%의 순으로 나타났다. 둘째, 본 연구에서 개발된 아파트 모델은 기존 모델에 비해 평균 6.3dBm, 최소 2.15 ~ 최대 12.48dBm의 개선 효과가 있다. 셋째, 급속히 확산되는 도시 개발에 3차원 공간상에서 전파예측모델을 시뮬레이션하여 전파의 영향을 예측할 수 있으며, 대단지 아파트 건설과 전파환경영향평가의 기초정보 수집에 활용될 수 있다. 본 연구는 GARP모델과 GIS 가시권 분석기능을 이용하여 실제 지형공간상에서 전파경로 손실치를 도시화함으로써 전파관리자가 무선서비스지역 설계, 전파음영지역 판단, 최적 중계기와 기지국 위치 선정에 기여할 것으로 판단된다.하지 않은 지역과 서로 다른 분광특성을 나타내므로 별도의 Segment를 형성하게 된다. 따라서 임상도의 경계선으로부터 획득된 Super-Object의 분광반사 값과 그 안에서 형성된 Sub-Object의 분광반사값의 차이를 이용하여 임상도의 갱신을 위한 변화지역을 탐지하였다.라서 획득한 시추코아에 대해서도 각 연구기관이 전 구간에 대해 동일하게 25%의 소유권을 가지고 있다. ?스굴 시추사업은 2008년까지 수행될 계획이며, 시추작업은 2005년까지 완료될 계획이다. 연구 진행과 관련하여, 공동연구의 명분을 높이고 분석의 효율성을 높이기 위해서 시료채취 및 기초자료 획득은 4개국의 연구원이 모여 공동으로 수행한 후의 결과물을 서로 공유하고, 자세한 전문분야 연구는 각 국의 대표기관이 독립적으로 수행하는 방식을 택하였다 ?스굴에 대한 제1차 시추작업은 2004년 3월 말에 실시하였다. 시추작업 결과, 약 80m의 시추 코아가 성공적으로 회수되어 현재 러시아 이르쿠츠크 지구화학연구소에 보관중이다. 이 시추코아는 2004년 8월 중순경에 4개국 연구팀원들에 의해 공동으로 기재된 후에 분할될 계획이다. 분할된 시료는 국내로 운반되어 다양한 전문분야별 연구에 이용될 것이다. 한편, 제2차 시추작업은 2004년 12월에서 2005년 2월 사이에 실시될 계획이다. 수백만년에 이르는 장기간에 걸쳐 지구환경변화 기록이 보존되어 있는 ?스굴호에 대한 시추사업은 후기 신생대 동안 유라시아 대륙 중부에서 일어난 지구환경 및 기후변화를 이해함과 동시에 이러한 변화가 육상생태계 및 지표지질환경에 미친 영향을 이해하는데 크게 기여할 것이다.lieve in safety with Radioactivity wastes control for harmony with Environment.d by the experiments under vari
ISO/IEC MPEG-4 FGS (finer granular scalable) 비디오 스트림을 패킷손실 측면의 차등서비스 (differentiated services: DiffServ) 네트워크상에서 차별화 전송하는 시스템을 제안하고, 그 성능을 분석한다. 이를 위한 전체 제안시스템의 구조는 크게 다음의 3 부분으로 나눌 수 있다. 즉 1) 선형 근사화한 전송율-왜곡치 (rate-distortion: R-D) 모델를 사용하여 비디오 품질를 일정하게 유지하는 최적의 계층화된 전송율 적응 제어 부분, 2) 각각의 비디오 패킷이 손실될 때 전체품질에 미치는 영향을 고려하는 우선순위 패킷화 (prioritized packetization) 부분, 그리고 3) 이와 같이 우선순위화된 비디오 패킷 스트림을 차등서비스 네트워크 상에서 차별화 전송을 수행하는 부분으로 구분할 수 있다. 따라서 상기한 3 부분들이 효율적으로 연동되어 비디오 전송을 수행할 때, 동일한 네트워크 자원이 주어진 경우 얻을 수 있는 종단간 (end-to-end) 비디오 품질의 향상을 비교 분석하였다.
본고에서는 Machine Type Communications(MTC) 표준화 동향을 소개한다. MTC는 사람이 개입하지 않는 상태에서 기기 및 사물 간에 일어나는 통신이라고 정의하고 있고, 사물의 이동성, 도서, 산간, 해양 등을 포함하는 광범위한 서비스 지역, 네트워크의 운영 및 유지보수의 용이성, 신뢰도 높은 데이터 전송을 위한 보안, 그리고 서비스 품질 보장 등을 고려하여, 이동통신 네트워크를 기반으로 하는 사물통신을 수용하기 위한 것이다. 우선 M2M(Machine to Machine) 개념 및 3GPP(3rd Generation Partnership Project)에서 도출한 응용 분야를 기술하고, 이어서 3GPP MTC 표준화 일정을 살펴보고, 현재까지의 주요 표준 문서의 작성 내용 중 MTC 요구사항의 정의와 구조 모델의 정의, 과부하 제어를 위한 표준화가 주된 내용으로 2011년 9월에 완성된 Release 10 NIMTC(Network Improvements for MTC) 내용을 살펴보고, 마지막으로 현재 3GPP RAN(Radio Access Network)1에서 활발하게 논의되고, 작성하고 있는 저가의 MTC 단말을 지원하기 위한 방안에 대한 기술보고서의 내용에 대해서 살펴보았다.
현재 사이버 공격이 더욱 지능화됨에 따라 기존의 침입 탐지 시스템(Intrusion Detection System)은 저장된 패턴에서 벗어난 지능형 공격을 탐지하기 어렵다. 이를 해결하려는 방법으로, 데이터 학습을 통해 지능형 공격의 패턴을 분석하는 딥러닝(Deep Learning) 기반의 침입 탐지 시스템 모델이 등장했다. 침입 탐지 시스템은 설치 위치에 따라 호스트 기반과 네트워크 기반으로 구분된다. 호스트 기반 침입 탐지 시스템은 네트워크 기반 침입 탐지 시스템과 달리 시스템 내부와 외부를 전체적으로 관찰해야 하는 단점이 있다. 하지만 네트워크 기반 침입 탐지 시스템에서 탐지할 수 없는 침입을 탐지할 수 있는 장점이 있다. 따라서, 본 연구에서는 호스트 기반의 침입 탐지 시스템에 관한 연구를 수행했다. 호스트 기반의 침입 탐지 시스템 모델의 성능을 평가하고 개선하기 위해서 2018년에 공개된 호스트 기반 LID-DS(Leipzig Intrusion Detection-Data Set)를 사용했다. 해당 데이터 세트를 통한 모델의 성능 평가에 있어서 각 데이터에 대한 유사성을 확인하여 정상 데이터인지 비정상 데이터인지 식별하기 위해 1차원 벡터 데이터를 3차원 이미지 데이터로 변환하여 재구성했다. 또한, 딥러닝 모델은 새로운 사이버 공격 방법이 발견될 때마다 학습을 다시 해야 한다는 단점이 있다. 즉, 데이터의 양이 많을수록 학습하는 시간이 오래 걸리기 때문에 효율적이지 못하다. 이를 해결하기 위해 본 논문에서는 적은 양의 데이터를 학습하여 우수한 성능을 보이는 Few-Shot Learning 기법을 사용하기 위해 Siamese-CNN(Siamese Convolutional Neural Network)을 제안한다. Siamese-CNN은 이미지로 변환한 각 사이버 공격의 샘플에 대한 유사성 점수에 의해 같은 유형의 공격인지 아닌지 판단한다. 정확성은 Few-Shot Learning 기법을 사용하여 정확성을 계산했으며, Siamese-CNN의 성능을 확인하기 위해 Vanilla-CNN(Vanilla Convolutional Neural Network)과 Siamese-CNN의 성능을 비교했다. Accuracy, Precision, Recall 및 F1-Score 지표를 측정한 결과, Vanilla-CNN 모델보다 본 연구에서 제안한 Siamese-CNN 모델의 Recall이 약 6% 증가한 것을 확인했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.