• Title/Summary/Keyword: 16s rRNA gene

Search Result 1,145, Processing Time 0.03 seconds

Four newly recorded species of planktonic cyanobacteria (Oscillatoriales, Cyanobacteria) in Korea

  • Ji-Ho, Song;Do-Hyun, Kim;Nam-Ju, Lee;So-Won, Kim;Hye-Ryeung, Wang;Ok-Min, Lee
    • Journal of Species Research
    • /
    • v.11 no.4
    • /
    • pp.321-329
    • /
    • 2022
  • Four species of cyanobacteria that are unrecorded in Korea were isolated from freshwater and brackish water. These four species are Laspinema thermale of Laspinemaceae, Planktothricoides raciborskii and Planktothrix spiroides of Microcoleaceae, and Cephalothrix lacustris of Phormidiaceae, all belonging to the order Oscillatoriales. Laspinema thermale is morphologically characterized as apical cells that are longer than other cells. In this strain, the similarity of the 16S rRNA gene sequence with the previously reported L. thermale strains were 99.30-99.50%. Planktothricoides raciborskii, which is characterized by bluntly conical morphology of apical cells, showed 98.80-99.50% of similarity of the 16S rRNA gene sequence to the previously reported P. raciborskii strains. Planktothrix spiroides are characterized by floating due to gas vacuoles. In this strain, the similarity of the 16S rRNA gene sequence with the previously reported P. spiroides strains were 99.80-99.90%. Cephalothrix lacustris, characterized by having calyptra in apical cells, showed 99.80-99.90% similarity of the 16S rRNA gene sequence to previously reported C. lacustris strains. Also, these species were clustered in the same clade in phylogenetic analysis using 16S rRNA gene sequences with each corresponding species.

Genetic characterization and phylogenetic analysis of Clostridium chauvoei isolated from Hanwoo in Jeonbuk (전북지역 한우에서 분리한 기종저 균의 유전학적 특성 규명)

  • Kim, Chul-Min;Jeong, Jae-Myong;Choi, Ki-Young
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.3
    • /
    • pp.157-164
    • /
    • 2014
  • Clostridium chauvoei is the etiologic agent of blackleg, a high mortality rated disease infection mainly cattle. In the present study, the partial sequences of 16S rRNA and flagellin gene of C. chauvoei isolated in Jeonbuk, Korea were determined and compared with those of reference strain. Oligonucleotide primers were designed to amplify a 811 bp fragment of 16S rRNA gene and 1229 bp fragment of flagellin gene. Sequencing analysis of 16S rRNA gene showed high homology to the reference strains ranging 82.3% to 100%, while flagellin gene were different from published foreign clostridia, showing 98.7% to 72.0% nucleotide sequence homology. Phylogenetic analysis based on 16S rRNA gene revealed the close phylogenetic relationship of C. chauvoei and C. septicum in cluster I, which includes C. carnis, C. tertium, C. quinii, C. celatum, C. perfringens, C. absonum, C. botulinum B. Phylogentic analysis also revealed that flagellin gene formed a single cluster with C. chauvoei, C. septicum, C. novyi A, C. novyi B, C. tyrobutylicum, C. acetobutylicum. The genetic informations obtained from this study could be useful for the molecular study of C. chauvoei.

Phylogenetic Relationship of Microcystis (Cyanophyceae) Based on Partial 16S rRNA Gene Sequences in Korea (16S rRNA 유전자의 일부 염기서열에 기초한 한국산 Microcystis의 계통 유연관계)

  • Kim, Jong-In;Lim, Jong-Hun;Lee, Jae-Wan;Lee, Hae-Bok
    • ALGAE
    • /
    • v.17 no.3
    • /
    • pp.153-159
    • /
    • 2002
  • Partial 16S rRNA gene sequences of seven cyanophycean strains from the National Instiute of Environmental Research of Korea - Microcystis aeruginosa, M. aeruginosa f. aeruginosa, M. ichthyoblade, M. viridis, Anabaena flos-aquae, and Oscillatoria sancta - were analyzed and the phylogenetic relationship of Microcystis among Cyanophyceae were evaluated. Based on sequence analysis results, Microcystis is monophyletic, the clade of which supported 100% bootstrap tress, and distinguished clearly from the other taxa. Therefore, the partial 16S rRNA gene sequences can be a useful and efficient tool for distinguishing Microcystis from other cyanophycean without axenic culture or cloning.

Identification of the Nitrifying Archaeal Phylotype Carrying Specific amoA Gene by Applying Digital PCR (디지털 PCR을 응용한 특정 amoA유전자를 가진 질산화 Archaea 동정)

  • Park, Byoung-Jun;Park, Soo-Je;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.232-235
    • /
    • 2007
  • Mesophilic Crenarchaeota have been known to be predominant among ammonia-oxidizing microorganisms in terrestrial and marine environments. In this study, we determined the archaeal phylotypes carrying specific amoA by combining digital PCR and multiplex-nested PCR. Analysis of samples in which amoA and 16S rRNA gene were amplified showed that amoA gene diversity was relatively higher than that of 16S rRNA gene. Nitrifying archaeal group I.1a was dominant over I.1b group of crenarchaota and euryarchaeota. This approach could be applied for interrelating a functional gene to a specific phylotype in natural environments.

Genetic Identification of the Kimchi Strain Using PCR-based PepN and 16S rRNA Gene Sequence (PepN과 16S rRNA Gene Sequence 및 PCR 방법을 이용한 김치 젖산균의 동정)

  • Lee, Myung-Ki;Park, Wan-Soo;Lee, Byong-H.
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1331-1335
    • /
    • 2000
  • The WL6 strain isolated from Kimchi could not be made scientific name because it was identified as three species, i.e., Leuconostoc mesenternides ssp cremoris, Leu. mesenteroides ssp. dextranicum or Lactobacillus bifermentans when it was tested by API kit or Biolog system methods. The unidentifiable WL6 strain was finally reclassified as Lactobacillus bifermentans by genetic identification using two PCR-based specific sequence primer sets which were originated from homologous pepN and 16S rRNA genes.

  • PDF

Genetic Diversity Among Pseudomonas syringae pv. morsprunorum Isolates from Prunus mume in Korea and Japan by Comparative Sequence Analysis of 16S rRNA Gene

  • Lee, Young-Sun;Koh, Hyun-Seok;Sohn, San-Ho;Koh, Young-Jin;Jung, Jae-Sung
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.295-298
    • /
    • 2012
  • Genetic diversity among Pseudomonas syringae pv. morsprunorum isolates from Prunus mume in Korea and Japan was investigated by comparative sequence analysis of the 16S rRNA gene. The strains included 24 field isolates recovered from P. mume in Korea along with seven Japanese strains. Two strains isolated from P. salicina in Japan, one strain from P. avium in the United Kingdom, and the pathotype strain were also used for comparison with their 16S rRNA gene sequences. Nearly complete 16S rRNA gene sequences were sequenced in all 35 strains, and three sequence types, designated types I, II and III, were identified. Eleven strains consisting of five Korean isolates, five Japanese strains, and one strain from the United Kingdom belonged to type I, whereas the pathotype strain and another 19 Korean isolates belonged to type III. Another four Japanese strains belonged to type II. Type I showed 98.9% sequence homology with type III. Type I and II had only two heterogeneous bases. The 16S rRNA sequence types were correlated with the races of P. syringae pv. morsprunorum. Type I and II strains belonged to race 1, whereas type III isolates were included in race 2. Sequence analyses of the 16S rRNA gene from P. syringae pv. morsprunorum were useful in identifying the races and can further be used for epidemiological surveillance of this pathogen.

Characterization of Cytophaga-Flavobacteria Community Structure in the Bering Sea by Cluster-specific 16S rRNA Gene Amplification Analysis

  • Chen, Xihan;Zeng, Yonghui;Jiao, Nianzhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.194-198
    • /
    • 2008
  • A newly designed Cytophaga-Flavobacteria-specific 16S rRNA gene primer pair was employed to investigate the CF community structure in the Bering Sea, revealing a previously unknown and unexpected high CF diversity in this high latitude cold sea. In total, 56 clones were sequenced and 50 unique CF 16 rRNA gene fragments were obtained, clustering into 16 CF subgroups, including nine cosmopolitan subgroups, five psychrophilic subgroups, and two putatively autochthonous subgroups. The majority of sequences (82%) were closely related to uncultured CF species and could not be classified into known CF genera, indicating the presence of a large number of so-far uncultivated CF species in the Bering Sea.

Analysis of RNA Polymerase Beta Subunit (rpoB) Gene Sequences for the Discrimination of Cyanobacteria Anabaena Species (남조세균 Anabaena 종 구분을 위한 RNA Polymerase Beta Subunit (rpoB) 유전자 염기서열 분석)

  • Cheon, Ju-Yong;Lee, Min-Ah;Ki, Jang-Seu
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.268-274
    • /
    • 2011
  • Anabaena (Cyanobacteria, Nostocales) are important for water quality controls, because they are often responsible for freshwater green tides; moreover, some species are reported to produce hepatotoxin. In this study, we sequenced RNA polymerase beta subunit (rpoB) gene of Anabaena, and evaluated their sequences for the potential use of a molecular taxonomic marker in this taxon. Anabaena rpoB showed low DNA similarity and high genetic divergences when compared those of 16S rRNA, and the molecular differences were statistically significant (Student t-test, p<0.01). Parsimony analyses showed the rpoB gene evolves 4.8-fold faster than 16S rRNA. In addition, phylogeny of the rpoB gene separated each Anabaena strain more clearly compared with a 16S rRNA tree. These results suggest that the rpoB gene is a useful marker for the molecular phylogenetics and the species discrimination of Anabaena.

Application of Next Generation Sequencing to Investigate Microbiome in the Livestock Sector (Next Generation Sequencing을 통한 미생물 군집 분석의 축산분야 활용)

  • Kim, Minseok;Baek, Youlchang;Oh, Young Kyoon
    • Journal of Animal Environmental Science
    • /
    • v.21 no.3
    • /
    • pp.93-98
    • /
    • 2015
  • The objective of this study was to review application of next-generation sequencing (NGS) to investigate microbiome in the livestock sector. Since the 16S rRNA gene is used as a phylogenetic marker, unculturable members of microbiome in nature or managed environments have been investigated using the NGS technique based on 16S rRNA genes. However, few NGS studies have been conducted to investigate microbiome in the livestock sector. The 16S rRNA gene sequences obtained from NGS are classified to microbial taxa against the 16S rRNA gene reference database such as RDP, Greengenes and Silva databases. The sequences also are clustered into species-level OTUs at 97% sequence similarity. Microbiome similarity among treatment groups is visualized using principal coordinates analysis, while microbiome shared among treatment groups is visualized using a venn diagram. The use of the NGS technique will contribute to elucidating roles of microbiome in the livestock sector.

Genetic Characterization of Clinical Acanthamoeba Isolates from Japan using Nuclear and Mitochondrial Small Subunit Ribosomal RNA

  • Rahman, Md Moshiur;Yagita, Kengi;Kobayashi, Akira;Oikawa, Yosaburo;Hussein, Amjad I.A.;Matsumura, Takahiro;Tokoro, Masaharu
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.4
    • /
    • pp.401-412
    • /
    • 2013
  • Because of an increased number of Acanthamoeba keratitis (AK) along with associated disease burdens, medical professionals have become more aware of this pathogen in recent years. In this study, by analyzing both the nuclear 18S small subunit ribosomal RNA (18S rRNA) and mitochondrial 16S rRNA gene loci, 27 clinical Acanthamoeba strains that caused AK in Japan were classified into 3 genotypes, T3 (3 strains), T4 (23 strains), and T5 (one strain). Most haplotypes were identical to the reference haplotypes reported from all over the world, and thus no specificity of the haplotype distribution in Japan was found. The T4 sub-genotype analysis using the 16S rRNA gene locus also revealed a clear subconformation within the T4 cluster, and lead to the recognition of a new sub-genotype T4i, in addition to the previously reported sub-genotypes T4a-T4h. Furthermore, 9 out of 23 strains in the T4 genotype were identified to a specific haplotype (AF479533), which seems to be a causal haplotype of AK. While heterozygous nuclear haplotypes were observed from 2 strains, the mitochondrial haplotypes were homozygous as T4 genotype in the both strains, and suggested a possibility of nuclear hybridization (mating reproduction) between different strains in Acanthamoeba. The nuclear 18S rRNA gene and mitochondrial 16S rRNA gene loci of Acanthamoeba spp. possess different unique characteristics usable for the genotyping analyses, and those specific features could contribute to the establishment of molecular taxonomy for the species complex of Acanthamoeba.