• Title/Summary/Keyword: 16s rRNA Sequencing

Search Result 520, Processing Time 0.032 seconds

Effects of Season Differences on the Cecal Microbiome of Broiler at Conventional Farms and Welfare System Farms (계절에 따른 일반 농가와 복지 농가 육계의 맹장 내 미생물 균총에 미치는 영향)

  • Junsik Kim;Seol Hwa Park;Minji Kim;Seong Hoon Shim;Hwan Ku Kang;Jin Young Jeong
    • Korean Journal of Poultry Science
    • /
    • v.51 no.2
    • /
    • pp.73-82
    • /
    • 2024
  • The gut microbiome of broilers is a critical factor in overall health and productivity. However, high summer temperatures and high stocking density (conventional farm condition) may cause stress to broilers, resulting in an imbalance in the gut microbiome. This study was conducted to compare the gut microbiome of broilers between spring and summer in welfare (Bosung, Jeollanam-do, South Korea) and conventional farms (Jangsu, Jeollabuk-do, South Korea). A total of 31 broilers were assigned to the following groups: conventional farm in spring (n = 8); conventional farm in summer (n = 8); welfare farm in spring (n = 7); welfare farm in summer (n = 8). Cecal digesta were collected from eight broilers from each farm, and microbiome analysis was performed using 16S rRNA gene sequencing. Beta diversity analysis indicated clear differences in cecal microbiome composition between spring and summerin both welfare and conventional farm. At the phylum level, analysis of conventional farm revealed a higher proportion of Bacteroidetes in spring than in summer. At the genus level, broilers exhibited a higher abundance of Bacteroides and Alistipesin spring compared to summer. In contrast, the difference in microbial flora composition observed in welfare farm was relatively small compared to conventional farm. In conclusion, the results of this study suggest that heat stress can negatively affect the caecum microbiome of broilers. However, improvements in the housing environment can mitigate the effects of heat stress.

Deacidification Effect of Campbell Early Must through Carbonic-Maceration Treatment: Isolation and Properties of the Bacteria Associated with Deacidification (Carbonic Maceration처리에 의한 Campbell Early 발효액의 감산 효과: 감산 관련 미생물의 분리 및 특성)

  • Chang, Eun-Ha;Jeong, Seok-Tae;Jeong, Sung-Min;Lim, Byung-Sun;Noh, Jung-Ho;Park, Kyo-Sun;Park, Seo-Jun;Choi, Jong-Uck
    • Food Science and Preservation
    • /
    • v.18 no.6
    • /
    • pp.973-979
    • /
    • 2011
  • The grape cultivar Campbell Early has high levels of malic acid as well as tartaric acid. The high concentration of total acid in the Campbell Early wine is a critical aspect of the wine's sensory characteristics. To prevent the deterioration of the wine's quality, which is caused by the strong sour taste derived from the raw material in wine making, the deacidification factor was investigated via carbonic maceration under different temperature conditions, especially in the presence or absence of malolactic bacteria. Based on the results of the presence test of the malolactic bacteria during carbonic-maceration treatment, Lactobacillus brevis, Lactobacillus plantarum, and Streptococcus thermophilus were characterized morphologically and were identified via biochemical tests and 16S-rRNA-gene-sequencing analysis. The isolated strains were found not to consume malic acid and to produce lactic acid. Moreover, these strains were consumed as soluble solids. The isolated strains are popularly known as lactic-acid bacteria and should have produced lactic acid from glucose. The Oenococcus oeni of the malolactic bacteria was not isolated. These results showed that the isolated strains are not deacidified during carbonic-maceration treatment.

Physiological Characteristics of Starter Isolated from Kimchi and Fermentation of Tofu with Isolated Starter (발효두부 제조용 Starter의 선발과 이를 이용한 두부의 발효특성)

  • Kang, Kyoung Myoung;Lee, Shin Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.11
    • /
    • pp.1626-1631
    • /
    • 2012
  • Sixty strains of lactic acid bacteria were isolated from kimchi and used as a starter for fermented tofu. Among the isolated strains, strain KL-6 showed antimicrobial activity against various pathogens, antioxidative activity, and viability in artificial gastric juice and artificial bile acid. The selected strain KL-6 was identified as Pediococcus acidilactici KL-6 by morphological and physiological tests, including Gram staining, catalase test, and 16S rRNA sequencing. The fermentation characteristics of tofu with a kimchi ingredient mixture (Control) consisting of red pepper, garlic, ginger, sugar, salt, jeotgal, and juice of chinese cabbage were compared with those of tofus inoculated with strain KL-6 and the kimchi ingredient mixture (TL) or a pre-fermented kimchi ingredient mixture (TPL) for 24 hr at $37^{\circ}C$. The pH levels of all tested tofu samples decreased after 1 week of fermentation, reaching 3.96 (control), 3.97 (TL), and 4.03 log cfu/g (TPL) after fermentation for 14 weeks at $20^{\circ}C$. Total aerobe content of fermented tofu increased until 2 weeks of fermentation, but decreased steadily thereafter. The number of lactic acid bacteria reached $10^6$ cfu/g after 1 week of fermentation in TL and TPL, whereas it took 2 weeks for the control. The number of lactic acid bacteria in all tested tofu samples reached $10^3$ cfu/g after 14 weeks of fermentation at $20^{\circ}C$. Coliform bacteria were not detected in TL or TPL after 1 week of fermentation. The sensory scores of TL and TPL were higher than that of control in terms of taste, flavor, texture, and overall acceptability. The sensory quality of TPL was the best among all tested fermented tofu samples.

Isolation of Photosynthetic Bacterium, Rhodopseudomonas palustris JK-1 and Researches on IAA and Carotenoid Production (광합성세균 Rhodopseudomonas palustis 분리 및 IAA와 Carotenoid 생성에 관한 연구)

  • Kim, Yu-Kyoung;Cho, Young-Yun;Kang, Ho-Jun;Kim, Jung-Sun;Yang, Sung-Nyun;Jwa, Chang-sook
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.4
    • /
    • pp.843-859
    • /
    • 2017
  • The JK-1 isolate which was the best producer of indole-3-acetic acid and carotenoid among the 388 strains isolated from 28 wetlands in Jeju, was identified to be Rhodopseudomonas palustirs belongs to a typical group of non sulfur purple bacteria based on 16S sRNA sequencing. This study investigated the effect of different cultural conditions of pH, temperature, agitation, light and aeration on growth, IAA and carotenoid production of photosynthetic bacterium JK-1 for optimization of IAA and carotenoid production. It was found that growth, IAA, carotenoid, and bacteriochlorophyll production with light (3,000~3,500 Lux) and agitation (100 rpm) showed better results than those with dark/static or dark/agitation (100 rpm) in anaerobic conditions. The optimal pH, temperature and agitation speed for cell growth were 7, $30^{\circ}C$, 150 rpm, for IAA production were 9, $30^{\circ}C$, 150rpm and for carotenoid production were 6, $25^{\circ}C$, 50 rpm, cultured for 72 h under anaerobic light, respectively. The growth and IAA production were high in aerobic culture compared with anaerocic culture, whereas carotenoid and bacteriochlorophyll content were decreased extremely in aerobic condition (0.5~1 vvm). Subsequently, the optimal culture conditions for JK-1 were selected with pH 7, $30^{\circ}C$ and 100 rpm under anaerobic light and the effect on plant growth was tested by pot assay. Inoculation of JK-1 with 3% (v/v) level caused increase in shoot and root dry weigh that varied from 20%~58% to 40%~28% in young radish in camparison to uninoculated treatment at 50 days of growth. The study suggests that the JK-1 isolate may serve as efficient biofertilizer inoculants to promote plant growth.

Comparative Analysis of Gut Microbiota among Broiler Chickens, Pigs, and Cattle through Next-generation Sequencing (차세대염기서열 분석을 이용한 소, 돼지, 닭의 장내 미생물 군집 분석 및 비교)

  • Jeong, Ho Jin;Ha, Gwangsu;Shin, Su-Jin;Jeong, Su-Ji;Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1079-1087
    • /
    • 2021
  • To analyze gut microbiota of livestock in Korea and compare taxonomic differences, we conducted 16S rRNA metagenomic analysis through next-generation sequencing. Fecal samples from broiler chickens, pigs, and cattle were collected from domestic feedlots randomly. α-diversity results showed that significant differences in estimated species richness estimates (Chao1 and ACE, Abundance-based coverage estimators) and species richness index (OUTs, Operational taxonomic units) were identified among the three groups. However, NPShannon, Shannon, and Simpson indices revealed that abundance and evenness of the species were statistically significant only for poultry (broiler chickens) and mammals (pigs and cattle). Firmicutes was the most predominant phylum in the three groups of fecal samples. Linear discriminant (LDA) effect size (LEfSe) analysis was conducted to reveal the ranking order of abundant taxa in each of the fecal samples. A size-effect over 2.0 on the logarithmic LDA score was used as a discriminative functional biomarker. As shown by the fecal analysis at the genus level, broiler chickens were characterized by the presence of Weissella and Lactobacillus, as well as pigs were characterized by the presence of provetella and cattele were characterized by the presence of Acinetobacter. A permutational multivariate analysis of variance (PERMANOVA) showed that differences of microbial clusters among three groups were significant at the confidence level. (p=0.001). This study provides basic data that could be useful in future research on microorganisms associated with performance growth, as well as in studies on the livestock gut microbiome to increase productivity in the domestic livestock industry.

Mitigation Effect of Drought Stress by Plant Growth-promoting Bacterium Bacillus sp. SB19 on Kale Seedlings in Greenhouse (식물생장촉진 Bacillus sp. SB19 균주의 케일 처리에 대한 가뭄 스트레스 완화 효과)

  • Kim, Dayeon;Lee, Sang-Yeob;Kim, Jung-Jun;Han, Ji-Hee
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.833-847
    • /
    • 2016
  • Drought stress is a major agricultural limitation to crop productivity worldwide, especially by which leafy vegetables, plant leaves eaten as vegetable, could be more lethal. The study was carried out to know the effect of drought tolerance plant growth promoting bacteria (PGPB) on water stress of kale seedlings. A total of 146 morphologically distinct bacterial colonies were isolated from bulk soil and rhizosphere soil of leafy vegetables and screened for plant growth promoting microbioassay in greenhouse. Out of them the isolate SB19 significantly promoted the growth of kale seedlings in increasement of about 42% of plant height (14.1 cm), 148% of leaf area ($19.0cm^2$) and 138% of shoot fresh weight (1662.5 mg) attained by the bacterially treated plants compared to distilled water treated control (9.9 cm, $7.7cm^2$, 698.8 mg). Shoot water content of SB19 treated kale seedlings (1393.8 mg) was also increased about 152% compared with control (552.5 mg). The SB19 isolated from bulk soil of kale plant in Iksan, Korea, was identified as species of Bacillus based on 16S rRNA gene sequencing analysis. We evaluated the effect of drought tolerance by the Bacillus sp. SB19 on kale seedlings at 7th and 14th days following the onset of the water stress and watering was only at 7th day in the middle of test. In the survey of 7th and 14th day, there were mitigation effect of drought stress in kale seedlings treated with $10^6$ and $10^7cell\;mL^{-1}$ of SB19 compared to distilled water treated control. Especially, there were more effective mitigation of drought damage in kale seedlings treated with $10^7cell\;mL^{-1}$ than $10^6cell\;mL^{-1}$. Further, although drought injury of bacterially treated kale seedlings were not improved at 14th day compared with 7th day, drought injury of $10^7cell\;mL^{-1}$ of SB19 treated kale seedlings were not happen rapidly but developed over a longer period of time than $10^6cell\;mL^{-1}$ of SB19 or control. The diffidence of results might be caused by the concentration of bacterial suspension. This study suggests that beneficial plant-microbe interaction could be a important role of enhancement of water availability and also provide a good method for improving quality of leafy vegetables under water stress conditions.

Isolation and biochemical characterization of acid tolerance xylanase producing Bacteria, Bacillus sp. GJY from city park soil (도심공원으로부터 산내성 xylanase를 생산하는 박테리아 분리 및 효소학적 특성)

  • Jang, Min-Young;Park, Hwa Rang;Lee, Chong Gyu;Choo, Gab-Chul;Cho, Hyun Seo;Park, Sam-Bong;Oh, Ki-Cheol;Kim, Bong-Gyu
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.1
    • /
    • pp.79-86
    • /
    • 2017
  • Microbes in forest are very important due to not only to enhance soil fertility but also maintain a healthy ecosystem by supplying the energy available to living organisms by producing various kinds of enzymes related to degradation of lignocellulosic biomass. In order to isolate a lignocellulosic biomass degrading bacterial strain from the Jurassic park located in Gyeongnam National University of Science and Technology, We used the Luria-Bertani-Carboxymethyl cellulose (CMC) agar trypan blue method containing 0.4 % carboxymethyl cellulose and 0.01 % trypan blue. As a result, we isolated a bacterial strain showing both activity on the CMC and xylan. To identify the isolated strain, 16S rRNA sequencing and API kit analysis were used. The isolated strain turned out to belong to Bacillus species and then named Bacillus sp. GJY. In the CMC zymogram analysis, it showed that one active band of about 28kDa in size is present. Xylan zymogram analysis also showed to have one active band of about 25kDa in size. The optimal growth temperature of Bacillus sp. GJY was $37^{\circ}C$. The maximal activities of CMCase and xylanase were 12 hour after incubation. The optimal pH and temperature for CMCase were 5.0 and $40^{\circ}C$, respectively, whereas the optimal pH and temperature for xylanase was 4.0 and $40^{\circ}C$. Both activities for CMCase and xylanase showed to be thermally stable at 40and $50^{\circ}C$, while both activities rapidly decreased at over $60^{\circ}C$.

Biodegradation of Phenol by Comamonas testosteroni DWB-1-8 Isolated from the Activated Sludge of Textile Wastewater (섬유 폐수 활성 슬러지에서 분리한 Comamonas testosteroni의 생물학적 페놀 분해)

  • Kwon, Hae Jun;Choi, Doo Ho;Kim, Mi Gyeong;Kim, Dong-Hyun;Kim, Young Guk;Yoon, Hyeokjun;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.156-161
    • /
    • 2020
  • Since industrialization, the production and utilization of various chemicals has contributed to improving the quality of our lives, but the subsequent discharge of massive waste is inevitable, and environmental pollution is becoming more serious every day. Exposure to chemicals as a result of environmental pollution is having a negative effect on human health and the ecosystem, and cleaning up the polluted environment that can affect our lives is a very important issue. Toxic aromatic compounds have been detected frequently in soil, groundwater, and wastewater because of the extensive use of oil products, and phenol, which is used to produce synthetic resins, textiles, and dyes, is one of the major pollutants, along with insecticides and preservatives. Phenol can cause dyspnea, headache, vomiting, mutation, and carcinogenesis. Phenol-degrading bacterium DWB-1-8 was isolated from the activated sludge of textile wastewater; this strain was identified as Comamonas testosteroni by 16S rRNA gene sequencing. The optimal culture conditions for the cell growth and degradation of phenol were 0.7% K2HPO4, 0.6% NaH2PO4, 0.1% NH4NO3, 0.015% MgSO4·7H2O, 0.001% FeSO4·7H2O, an initial pH of 7, and a temperature of 30℃. The strain was also able to grow by using other toxic compounds, such as benzene, toluene, or xylene (BTX), as the sole source of carbon.

Characterization of Agarase from a Marine Bacterium Agarivorans sp. BK-1 (해양세균 Agarivorans sp. BK-1의 분리 및 β-아가라제의 특성 규명)

  • Ahn, Byeong-Ki;Min, Kyung-Cheol;Lee, Dong-Geun;Kim, Andre;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1173-1178
    • /
    • 2019
  • The purpose of this study was to isolate an agar-degrading marine bacterium and characterize its agarase. Bacterium BK-1, from Gwanganri Beach at Busan, Korea, was isolated on Marine 2216 agar medium and identified as Agarivorans sp. BK-1 by 16S rRNA gene sequencing. The extracellular agarase, characterized after dialysis of culture broth, showed maximum activity at pH 6.0 and $50^{\circ}C$ in 20 mM Tris-HCl buffer. Relative activities at 20, 30, 40, 50, 60, and $70^{\circ}C$ were 67, 93, 97, 100, 58, and 52%, respectively. Relative activities at pH 5, 6, 7, and 8 were 59, 100, 95, and 91%, respectively. More than 90% of the activity remained after a 2 hr exposure to 20, 30, or $40^{\circ}C$; about 60% of the activity remained after a 2 hr exposure to $50^{\circ}C$. Almost all activity was lost after exposure to 60 or $70^{\circ}C$ for 30 min. Zymography revealed three agarases with molecular weights of 110, 90, and 55 kDa. Agarose was degraded to neoagarobiose (46.8%), neoagarotetraose (39.7%), and neoagarohexaose (13.5%), confirming the agarase of Agarivorans sp. BK-1 as a ${\beta}$-agarase. The neoagarooligosaccharides generated by this agarase could be used for moisturizing, bacterial growth inhibition, skin whitening, food treatments, cosmetics, and delaying starch degradation.

Isolation of Agarivorans sp. JS-1 and Characterization of Its β-Agarase (한천분해세균 Agarivorans sp. JS-1의 분리 및 β-아가라제의 특성 규명)

  • Jin Sun Kim;Dong-Geun Lee;Go-Wun Yeo;Min-Joo Park;Sang-Hyeon Lee
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.357-362
    • /
    • 2023
  • This report looks at an agar-degrading marine bacterium and characterization of its agarase. Agar-degrading marine bacterium JS-1 was isolated with Marine agar 2216 media from seawater from the seashore of Sojuk-do, Changwon in Gyeongnam Province, Korea. The agar-degrading bacterium was named as Agarivorans sp. JS-1 by phylogenetic analysis based on 16S rRNA gene sequencing. The extracellular agarase was prepared from the culture media of Agarivorans sp. JS-1 and used for characterization. Relative activities at 20℃, 30℃, 35℃, 40℃, 45℃, 50℃, 55℃, and 60℃ were 70%, 74%, 78%, 83%, 87%, 100%, 74%, and 66%, respectively. Relative activities at pH 5, 6, 7, and 8 were 91%, 100%, 90%, and 89%, respectively. Its extracellular agarase showed maximum activity (207 units/l) at pH 6.0 and 50℃ in 20 mM Tris-HCl buffer. The residual activity after heat treatment at 20℃, 30℃, and 50℃ for 30 minutes was 90%, 70%, and 50% or more, respectively. After a 2-hour heat treatment at 20℃, 30℃, 35℃, 40℃, and 45℃, the residual activity was 80%, 68%, 65%, 63%, and 57%, respectively. At 50℃ and above, after heat treatment for 30 minutes, the residual activity was below 60%. Thin layer chromatography analysis suggested that Agarivorans sp. JS-1 produces extracellular β-agarases as they hydrolyze agarose to produce neoagarooligosaccharides such as neoagarohexaose (20.6%), neoagarotetraose (58.5%), and neoagarobiose (20.9%). Agarivorans sp. JS-1 and its thermotolerant β-agarase would be useful in the production of neoagarooligosaccharides, showing functional activity such as inhibition of bacterial growth and delay of starch degradation.