Browse > Article
http://dx.doi.org/10.11625/KJOA.2017.25.4.843

Isolation of Photosynthetic Bacterium, Rhodopseudomonas palustris JK-1 and Researches on IAA and Carotenoid Production  

Kim, Yu-Kyoung (제주특별자치도농업기술원 친환경연구과)
Cho, Young-Yun (제주특별자치도농업기술원 친환경연구과)
Kang, Ho-Jun (제주특별자치도농업기술원 친환경연구과)
Kim, Jung-Sun (제주특별자치도농업기술원 친환경연구과)
Yang, Sung-Nyun (제주특별자치도농업기술원 친환경연구과)
Jwa, Chang-sook (제주특별자치도농업기술원 친환경연구과)
Publication Information
Korean Journal of Organic Agriculture / v.25, no.4, 2017 , pp. 843-859 More about this Journal
Abstract
The JK-1 isolate which was the best producer of indole-3-acetic acid and carotenoid among the 388 strains isolated from 28 wetlands in Jeju, was identified to be Rhodopseudomonas palustirs belongs to a typical group of non sulfur purple bacteria based on 16S sRNA sequencing. This study investigated the effect of different cultural conditions of pH, temperature, agitation, light and aeration on growth, IAA and carotenoid production of photosynthetic bacterium JK-1 for optimization of IAA and carotenoid production. It was found that growth, IAA, carotenoid, and bacteriochlorophyll production with light (3,000~3,500 Lux) and agitation (100 rpm) showed better results than those with dark/static or dark/agitation (100 rpm) in anaerobic conditions. The optimal pH, temperature and agitation speed for cell growth were 7, $30^{\circ}C$, 150 rpm, for IAA production were 9, $30^{\circ}C$, 150rpm and for carotenoid production were 6, $25^{\circ}C$, 50 rpm, cultured for 72 h under anaerobic light, respectively. The growth and IAA production were high in aerobic culture compared with anaerocic culture, whereas carotenoid and bacteriochlorophyll content were decreased extremely in aerobic condition (0.5~1 vvm). Subsequently, the optimal culture conditions for JK-1 were selected with pH 7, $30^{\circ}C$ and 100 rpm under anaerobic light and the effect on plant growth was tested by pot assay. Inoculation of JK-1 with 3% (v/v) level caused increase in shoot and root dry weigh that varied from 20%~58% to 40%~28% in young radish in camparison to uninoculated treatment at 50 days of growth. The study suggests that the JK-1 isolate may serve as efficient biofertilizer inoculants to promote plant growth.
Keywords
carotenoid. indole-3-acetic acid; photosynthetic bacteria; Rhodopseudomonas palustris;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Naghavi, F. S., P. Hanachi, and A. Saboora. 2014. Effect of temperature, pH and salinity on carotenoid production in Rodotorula mucilaginosa. Research in Biotech. 5(4): 01-04.
2 Nunkaew, T., D. Kantachote, H. Kanzaki, T. Nitoda, and R. J. Richie. 2014. Effect of 5-aminolevulinic acid (ALA)-containing supernatants from selected Rhodopseudomonas palustris strains on rice growth under NaCl stress, with mediating effects on chlorophyll, photosynthetic electron transport and antioxidative enzymes. Electronic J. Biotech. 17: 19-26.   DOI
3 Pechter, K. B., L. Gallagher, H. Pyles, C. S. Manoil, and C. S. Harwood. 2016. Essential genome of the metabolically versatile alphaproteobacterium Rhodopseudomonas palustris. J. of Bacteriology. 198(5): 867-876.   DOI
4 Pierre, A. 1997. Food carotenoids and cancer prevention : An overview of current research. Trends in Food Sci. Tech. 8: 406.   DOI
5 Ramana, V. V., S. K. Chakravarthy, P. S. Raj, B. V. Kumar, E. Shobha, E. V. V. Ramaprasad, C. Sasikala, and Ch. V. Ramada. 2012. Description of Rhodopseudomonas parapalustris sp. nov., Rhodopseudomonas harwoodiae sp. nov. and Rhodopseudomonas pseudopalustris sp. nov., and emended description of Rhodopseudomonas palustris. Int. J. Systematic and Evo. Microbiology. 62: 1790-1798.   DOI
6 Saejung, C. and P. Apaiwong. 2015. Enhancement of carotenoid production in the new carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2. Biotech. & Biopro. Eng. 20: 701-707.   DOI
7 Wu, J., Y. Wang, and X. Lin. 2013. Purple phototrophic bacterium enhances stevioside yield by Stevia rebaudiana Bertoni via foliar spray and rhizosphere irrigation. PLOS ONE 8(6): 1-5.
8 Li, F. Z., X. Y. Zhou, X. X. Zeng, and J. Deng. 2008. Identification of a strain of Rhodopseudomonas palustris and researches on its carotenoid production. J. Food Sci. & Biotech. 27(4): 116-121.
9 Bong, K. M. K. M. Kim, M. K. Seo, J. H. Han, I. C. Park, C. W. Lee, and P. I. Kim. 2017. Optimization of medium for the carotenoid production by Rhodobacter sphaeroides PS-24 using response surface methodology. Korean J. Org. Agric. 25(1): 135-148.   DOI
10 Lee, S. S., H. J. Joo, S. C. Lee, M. Jang, T. K. Lee, H. J. Shim, and E. B. Shin. 2002. Development of advanced wastewater treatment system using photosynthetic purple nonsulfur bacteria. Kor. J. Microbiol. Biotechnol. 30(2): 189-197.
11 Liu, C. T., W. T. Wong, C. H. Tseng, S. H. Hsu, H. S. Lur, C. W. Mo, C. N. Huang, S. C. Hsu, and S. C. Hsu. 2014. Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input. Microbes Environ. 29(3): 303-313.   DOI
12 Spaepen, S., J. Vanderleyden, and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425-448.   DOI
13 Mohite, B. 2013. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant Nutr. 13(5): 1-11.
14 Murtaugh, M. A., K. N. Ma, J. Benson, K. Curtin, B. Can, and M. L. Slattery. 2004. Antioxidants, carotenoids, and risk of rectal cancer. Am. J. Epidemiol. 159: 32-41.   DOI
15 Sakpirom, J., D. Kantachote, T. Nunkaew, and E. Khan. 2017. Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation. Research in Microbiology. 168: 266-275.   DOI
16 Song, H. G. and E. S. Lee. 2010. Plant growth promotion by purple nonsulfur Rhodopseudomonas faecalis strains. Kor. J. Microbiology. 46(2): 157-161.
17 Song, S. H. 1993. Effects of carbon sources on the growth, formation of bacteriochlorophyll and carotenoid in a photosynthetic bacterium, Rhodospirillum rubrum. Graduate school of education, Jeju National University, Jeju, Korea.
18 Staley, J. T. 1989. Bergey's manual of systematic bacteriology. Williams & Wikinsm Co., New York.
19 Steenhoudt, O. and J. Vanderleyden. 2000. Azospirillum a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemiclal and ecological aspects. FEMS Microbiol. Rev. 24: 487-506.   DOI
20 Taghavi, S., C. Garafola, S. Monchy, L. Newman, and A. Hoffman. 2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl. Environ. Microbiol. 75: 748-757.   DOI
21 Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biology and Evolution. 28: 2731-2739.   DOI
22 Yoon, S. T., Y. O. Kim, I. S. Kim, and M. C. Lee. 2012. Effect of effective microorganism applications on growth, yield and fruit nutrient contents in Hot pepper. Kor. J. Organic Agriculture. 20(3): 313-326.
23 Xing, D., Y. Zuo, S. Cheng, J. M. Regan, and B. E. Logan. 2008. Electricity generation by Rhodopseomonas palustris. Environ. Sci. Tech. 42: 4146-4151.   DOI
24 Xu, J., Y. Feng, Y. Wang, X. Luo, J. Tang, and X. Lin. 2015. The foliar spray of Rhodopseudomonas plalustris grown under Stevia residue extract promotes plant growth via changing soil microbial community. J. Soils Sediments (doi: 10.1007/s11368-015-1269-1).   DOI
25 Yin, Z. P. Z. W. Shang, C. Wei, J. Ren, and X. S. Song. 2012. Foliar sprays of photosynthetic bacteria improve the growth and anti-oxidative capability on chinese dwarf cherry seedlings. J. Plant Nutr. 35(6): 840-853.   DOI
26 Apine, O. A. and J. P. Jadhav. 2011. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J. Appl. Microbiol. 110(5): 1235-1244.   DOI
27 Dobbelaere, S., A. Croonenborghs, A. Thys, B. A. Vande, and J. Vanderleyden. 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil. 212: 155-164.
28 Glickmann, E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indole compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796.
29 Holt, G. J., N. R. Krieg, P. H. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's manual of determinative bacteriology. 9th ed., Williams and Wilkins Co. Baltmore: 787.
30 Alberto, A. V., E. A. Wider, and A. M. C. Batlle. 1987. Porphyrin biosynthesis in Rhodopseudomonas palustris-XII. ${\delta}$-aminolevulinate synthetase switch-off/on regulation. Int. J. Biochem. 19(4): 379-383.   DOI
31 Jensen, S. L. and A. Jensen. 1971. Quantitative determination of carotenoids in photosynthetic tissues. Methods Enzymol. 23: 586-602.
32 Kim, J. K. and B. K. Lee. 2000. Mass production of Rhodopseudomonas palustris as diet for aquaculture. Aqua. Eng. 23: 281-293.   DOI
33 Kim, K. S. and H. S. Lee. 1976. Studies on Rhodopseudomonas palustris in Korea. Kor. J. Microbiol. 14(4): 167-175.
34 Koh, R. H. and H. G. Song. 2007. Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. J. Microbiol. Biotechnol. 17(11); 1805-1810.
35 Kuo, F. S., Y. H. Chien, and C. J. Chen. 2012. Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris. Bioresource Tech. 113: 315-318.   DOI
36 Lee, K. W. 1971. General characters and applications of photosynthetic bacteria. Kor. J. Microbiol. 9: 130-138.
37 Lambrecht, M., Y. Okon, A. V. Broek, and J. Vanerleyden. 2000. Indole-3-acetic acid : a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 8(7): 298-300.   DOI
38 Larimer, F. W., P. Chain, L. Hauser, J. Lamerdin, S. Malfatti, L. Do, M. L. Land, D. A. Pelletier, J. T. Beatty, A. S. Lang, F. R. Tabita, J. L. Gibson, T. E. Hanson, C. Bobst, J. L. Torres, C. Peres, F. H. Harrison, J. Gibson, and C. S. Harwood. 2004. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature biotechnology. 22(1): 55-61.   DOI
39 Lee, E. S. and H. G. Song. 2010. Plant growth promotiom by purple nonsulfur Rhodopseudomonas faecalis strains. Kor. J Microbiol. 46(2): 157-161.
40 Lee, S. K., H. S. Lur, K. J. Lo, K. C. Cheng, C. C. Chuang, S. J. Tang, Z. W. Yang, and C. T. Liu. 2016. Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3. Applied Microbiol & Biotech. 100(18): 7977-7987.   DOI