• Title/Summary/Keyword: 16S-rRNA

Search Result 1,879, Processing Time 0.03 seconds

Profiling Total Viable Bacteria in a Hemodialysis Water Treatment System

  • Chen, Lihua;Zhu, Xuan;Zhang, Menglu;Wang, Yuxin;Lv, Tianyu;Zhang, Shenghua;Yu, Xin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.995-1004
    • /
    • 2017
  • Culture-dependent methods, such as heterotrophic plate counting (HPC), are usually applied to evaluate the bacteriological quality of hemodialysis water. However, these methods cannot detect the uncultured or viable but non-culturable (VBNC) bacteria, both of which may be quantitatively predominant throughout the hemodialysis water treatment system. Therefore, propidium monoazide (PMA)-qPCR associated with HPC was used together to profile the distribution of the total viable bacteria in such a system. Moreover, high-throughput sequencing of 16S rRNA gene amplicons was utilized to analyze the microbial community structure and diversity. The HPC results indicated that the total bacterial counts conformed to the standards, yet the bacteria amounts were abruptly enhanced after carbon filter treatment. Nevertheless, the bacterial counts detected by PMA-qPCR, with the highest levels of $2.14{\times}10^7copies/100ml$ in softener water, were much higher than the corresponding HPC results, which demonstrated the occurrence of numerous uncultured or VBNC bacteria among the entire system before reverse osmosis (RO). In addition, the microbial community structure was very different and the diversity was enhanced after the carbon filter. Although the diversity was minimized after RO treatment, pathogens such as Escherichia could still be detected in the RO effluent. In general, both the amounts of bacteria and the complexity of microbial community in the hemodialysis water treatment system revealed by molecular approaches were much higher than by traditional method. These results suggested the higher health risk potential for hemodialysis patients from the up-to-standard water. The treatment process could also be optimized, based on the results of this study.

Isolation of Protease Producing Microorganisms (단백질 분해효소 생산 균주 분리)

  • Kim, Gi Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.265-270
    • /
    • 2014
  • Protease producing microorganisms were isolated from many kinds of food waste and fermented foods, which contains high amount and variable kinds of degraded substances. Several microorganisms were identified by 16S rRNA full sequencing analysis methods. The activity of protease was analyzed and identified in variable conditions for the application. For industrial use for biowaste treatment some proteases were isolated, identified and selected from microbial cells. And the tests were carried for the further use. The protein degrading activity at low temperature is useful for the treatment of organic waste, which contains much proteins. By the protein degradation process the organic waste can be utilized in variable fields, for example from feedstuff supplement to fertilizer for agriculture. Bacterial cells with protease activity at low temperature were isolated and identified. The optimal conditions for microbial cultivation and protease production were studied.

Report of 21 unrecorded bacterial species in Korea belonging to Betaproteobacteria and Epsilonproteobacteria

  • Kim, Min-Kyeong;Seong, Chi-Nam;Jahng, Kwangyeop;Cha, Chang-Jun;Joh, Ki-seong;Bae, Jin-Woo;Cho, Jang-Cheon;Im, Wan-Taek;Kim, Seung-Bum
    • Journal of Species Research
    • /
    • v.6 no.1
    • /
    • pp.15-24
    • /
    • 2017
  • During the extensive survey of the prokaryotic species diversity in Korea, bacterial strains belonging to Betaproteobacteria and Epsilonproteobacteria were isolated from various sources including freshwater, sediment, soil and fish. A total of 23 isolates were obtained, among which 22 strains were assigned to the class Betaproteobacteria and one strain to the class Epsilonproteobacteria. The 22 betaproteobacterial strains were further assigned to Comamonadaceae (11 strains), Burkholderiaceae (6 strains), Oxalobacteraceae (2 strains), Neisseriaceae (1 strain) and unclassified family groups (2 strains). For the strains of Burkholderiaceae, 3 strains were identified as 3 species of Burkholderia, and 2 strains were as 2 species of Cupriavidus. For the strains of Comamonadaceae, 4 strains were identified as 2 species of the genus Hydrogenophaga, 2 strains as 2 species of Acidovorax, 2 strains as 2 species of Limnohabitans, and each of the remaining strains as single species of Comamonas, Curvibacter and Rhodoferax, respectively. For the strains of Oxalobacteraceae, 1 strain was identified as a species of Undibacterium, and the other strain as a species of Herbaspirillum. The strain belonging to Neisseriaceae was identified as a species of Iodobacter. The remaining strains of Betaproteobacteria were identified as species of Sphaerotilus and Methylibium respectively (family unassigned). The epsilonproteobacterial strain was identified as a species of Arcobacter of the family Camplyobacteraceae. The detailed description of each unrecorded species is provided.

Enhanced pectinase and β-glucosidase enzyme production by a Bacillus subtilis strain under blue light-emitting diodes

  • Elumalai, Punniyakotti;Lim, Jeong-Muk;Oh, Byung-Teak
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.109-109
    • /
    • 2018
  • Bacillus subtilis B22, a chemotrophic and aerobic bacterial strain was isolated from homemade kimchi, identified by 16S rRNA gene sequencing. B22 was primarily screened by biochemical, carbon source utilization tests. B22 was used to produce pectinase and ${\beta}$-glucosidase by submerged fermentation under different light sources. B22 was incubated in pectin media and basal media (pH 7.0) under blue, green, red and white light-emitting diodes (LEDs), fluorescent white light, and in darkness at $37^{\circ}C$, orbital shaker 150 rpm for 24 hours. Fermentation under blue LEDs maximized pectinase production ($71.59{\pm}1.6U/mL$ at 24 h) and ${\beta}$-glucosidase production ($56.31{\pm}1.6U/mL$ at 24 h). Further, the production of enzyme increased to pectinase ($156{\pm}1.28U/mL$) and ${\beta}$-glucosidase ($172{\pm}1.28U/mL$) with 3% glucose as a carbon source. Activity and stability of the partially purified enzymes were higher at pH 6.0 to 8.0 and $25-55^{\circ}C$. The effect on the metal ions $Na^+$ and $K^+$ and (moderateactivity) $Mn^{2+}$ and $Ni^{2+}$ increased activity, while $Hg^{2+}$, $Cu^{2+}$, $Fe^{2+}$, and $Fe^{2+}$ inhibited activity. EDTA, phenylmethylsulfonyl fluoride and 5,5-dithiobis (2-nitrobenzoicacid) reduced activity, while tetrafluoroethylene and 1,10-phenanthroline inhibited activity. The amylase was highly tolerant of the surfactants TritonX-100, Tween-20, Tween-80 and compatible with organic solvents methanol, ethanol, isoamylalcohol, isopropanol, t-butylalcohol and the oxidizing agents hydrogen peroxide, sodium perborate and sodium hypochlorite, although potassium iodide and ammonium persulfate reduced activity. These properties suggest utility of pectinase and ${\beta}$-glucosidase produced by B. subtilis B22 under blue LED-mediated fermentation for industrial applications.

  • PDF

Screening of Antifungal Bacillus spp. against Alternaria Blight Pathogen (Alternaria panax) and Anthracnose Pathogen (Colletotrichum gloeosporioides) of Ginseng (인삼 점무늬병균(Alternaria panax)과 탄저병균(Colletotrichum gloeosporioides)에 대한 길항미생물 Bacillus spp. 선발)

  • Lee, Hye-Jin;Park, Kee-Choon;Lee, Seung-Ho;Bang, Kyong-Hwan;Park, Hong-Woo;Hyun, Dong-Yun;Kang, Seung-Weon;Cha, Seon-Woo;Chung, Ill-Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.5
    • /
    • pp.339-344
    • /
    • 2012
  • This study was carried out to research microorganisms having the antifungal activity against ginseng Alternaria blight pathogen Alternaria panax and ginseng anthracnose pathogen Colletotrichum gloeosporioides. Eleven Bacillus strains. were isolated from Korean traditional soybean paste and Kimchi. Among the 11 isolates, DJ5, KC1, KC2 and KC4 showing antagonistic activity on the mycelial growth of A. panax and C. gloeosporioides in pairing culture were finally selected as the antagonistic microorganisms. Based on 16s rRNA sequence and phylogenetic tree analysis, they were identified as Bacillus spp.. The selected microorganisms were investigated antagonistic activity by measured leaf-segment colonization in pot test. When Bacillus sp. were injected after A. panax treatment, KC1, KC2 and KC4 showed similar effect to chemical pesticides treated control. To measure preventive effect of Bacillus sp, antagonistic microorganisms were injected and C. gloeosporioides was treated in pot. When measuring the effectiveness for the prevention of Anthracnose, All Bacillus spp. showed approximately 83~90 % degree of superior preventive effect. In general, The four Bacillus spp. isolated from Korean traditional fermented foods showed therapeutic effect of Alternaria blight and preventive effect of Anthracnose.

Anticariogenic Activities of Lactobacillus sakei K-7 Isolated from Kimchi (김치로부터 분리한 Lactobacillus sakei K-7의 항충치 활성 특성)

  • Moon, Jin-Seok;Ahn, Ji-Eun;Han, A-Reum;Heo, Jeong-Seon;Eom, Hyun-Ju;Shin, Chul-Soo;Choi, Hye-Sun;Han, Nam-Soo
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.513-516
    • /
    • 2011
  • The occurrence of dental caries is mainly associated with oral pathogens, especially cariogenic Streptococcus mutans. The aim of this study was to isolate and characterize lactic acid bacterium showing inhibitory activity against cariogenic Streptococcus mutans. As results, an isolate with strong inhibitory activity was obtained from Kimchi and it was identified as Lactobacillus sakei by API and 16S rRNA gene analyses. This strain secreted an inhibitory compound in cell growth medium and the activity of the compound was completely disappeared by proteinase K revealing the fact that the compound is proteinous substance, bacteriocin. Optimal culture condition for bacteriocin production by Lb. sakei K-7 was at pH 7.5 and $37^{\circ}C$ for 18 h. Oral administration of this isolate may give anticariogenic and probiotic effects on hosts.

Cloning and Molecular Characterization of Epoxide Hydrolase from Aspergillus niger LK (Apergillus niger LK 유래의 Epoxide Hydrolase 클로닝 및 특성 분석)

  • 이은열;김희숙
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.562-567
    • /
    • 2001
  • Aspergillus niger LK harboring the enantioselective epoxide hydrolase (EHase) activity was isolated, and enantioselectivity of EHase was tested for various racemic aromatic epoxides. The gene encoding epoxide hydrolase was cloned from cDNA library generated by reverse transcriptase-polymerase chain reaction of the isolated total mRNA. Sequence analysis showed that the cloned gene encodes 398 amino acids with a deduced molecular mass of 44.5 kDa. Database comparison of the amino acid sequence reveals that it is similar to fungal EHase, whereas the sequence identity with bacterial EHase is very low. Recombinant expression of the cloned EHase in Escherichia coli BL21 yielded an active EHases, which can offer a potential biocatalyst for the production of chiral epoxides.

  • PDF

Analysis and Enrichment of Microbial Community Showing Reducing Ability toward indigo in the Natural Fermentation of Indigo-Plant (자연발효 과정에서 인디고에 환원력을 지닌 미생물 커뮤니티 분석과 농화배양)

  • Choi, Eun-Sil;Lee, Eun-Bin;Choi, Hyueong-An;Son, Kyunghee;Kim, Geun-Joong;Shin, Younsook
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.295-302
    • /
    • 2013
  • Indigo is utilized in various industries including textile dyeing, cosmetics, printing and medicinal products and its reduced form, leuco-indigo, is mainly used in these process. Chemical reducing agent (sodium dithionite, sodium sulfide, etc.) is preferred to use for the formation of leucoindigo in industry. In traditional indigo fermentation process, microorganisms can participate in the reduction of indigo and thus it has been known to reduce environmental pollution and noxious byproducts. However, in fermentation method using microorganisms it is difficult to standardize large scale production process due to low yield and reproducibility. In this study, we attempted to develop the indigo reduction process using microbial flora which was isolated from naturally fermented indigo vat or deduced by metagenomic approach. From the results of library analyses of PCR-amplified 16S rRNA genes from the traditional indigo fermentation vat sample (metagenome), it was confirmed that Alkalibacteriums (71%) was distinctly dominant in population. Some strains were identified after confirming that they become pure culture in nutrient media modified slightly. Four strains were separated in this process and each strain showed obvious reducing ability toward indigo in dyeing test. It is expected that the analyzed results will provide important data for standardizing the natural fermentation of indigo and investigating the mechanism of indigo reduction.

Nontuberculous Mycobacterial Lung Disease Caused by Mycobacterium lentiflavum in a Patient with Bronchiectasis

  • Jeong, Byeong-Ho;Song, Jae-Uk;Kim, Wooyoul;Han, Seo Goo;Ko, Yousang;Song, Junwhi;Chang, Boksoon;Hong, Goohyeon;Kim, Su-Young;Choi, Go-Eun;Shin, Sung Jae;Koh, Won-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.74 no.4
    • /
    • pp.187-190
    • /
    • 2013
  • We report a rare case of lung disease caused by Mycobacterium lentiflavum in a previously healthy woman. A 54-year-old woman was referred to our hospital due to chronic cough and sputum. A computed tomography scan of the chest revealed bilateral bronchiectasis with bronchiolitis in the right middle lobe and the lingular division of the left upper lobe. Nontuberculous mycobacteria were isolated twice from three expectorated sputum specimens. All isolates were identified as M. lentiflavum by multilocus sequence analysis based on rpoB, hsp65, and 16S rRNA fragments. To the best of our knowledge, this is the first documented case of M. lentiflavum lung disease in an immunocompetent adult in Korea.

Life History and Systematic Studies of Pseudothrix borealis gen. et sp. nov. (=North Pacific Capsosiphon groenlandicus, Ulotrichaceae, Chlorophyta)

  • Hanic, Louis A.;Lindstrom, Sandra C.
    • ALGAE
    • /
    • v.23 no.2
    • /
    • pp.119-133
    • /
    • 2008
  • We cultured a tubular marine green alga, originally identified as Capsosiphon groenlandicus (J. Agardh) K.L. Vinogradova, from Amaknak Island, Alaska. The alga had an alternation of heteromorphic generations in which tubular monoecious fronds produced quadriflagellate zoospores and/or biflagellate isogametes. The gametes fused to produce cysts or Codiolum-like zygotes with long, tortuous stalks. Cysts and codiola produced 8-16 aplanospores, which germinated in situ to yield upright fronds. Fronds arising from both aplanospores and zoospores displayed a distinctive development in which non-septate colorless rhizoids from the base of the initially uniseriate, Ulothrix-like filament were transformed into septate uniseriate Ulothrix-like photosynthetic filaments. These transformed filaments then developed new basal non-septate rhizoids. This pattern of rhizoids becoming filaments, which then produced new rhizoids, was repeated to yield a tuft of up to 50 fronds. Periclinal and longitudinal divisions occurred in each filament, starting basally, until the mature tubular thallus was achieved. Pyrenoid ultrastructure revealed several short inward extensions of chloroplast lamellae, each of which was surrounded by pyrenoglobuli. Analysis of ribosomal SSU and ITS sequences placed this alga in the family Ulotrichaceae, order Ulotrichales, together with but as a distinct species from North Atlantic Capsosiphon groenlandicus. Analysis of a partial ITS sequence from authentic Capsosiphon fulvescens, the current name of the type of the genus Capsosiphon, indicated that neither our material nor C. groenlandicus belongs in that genus, and we propose a new genus, Pseudothrix, to accommodate both species. We propose P. borealis for the North Pacific entity formerly called C. groenlandicus and make the new combination P. groenlandica for the Atlantic species.