• 제목/요약/키워드: 15-nitrogen

검색결과 2,682건 처리시간 0.227초

농촌유역의 질소 오염원과 기여도 해석을 위한 $\delta^{15}$N 분석(지역환경 \circled1) ($\delta^{15}$N Analysis for Interpretation of Nitrogen pollution Source and Contribution in Agricultural Watersheds)

  • 홍영진;권순국
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.513-518
    • /
    • 2000
  • It has been acknowledged that fertilizer, natural soil nitrogen and animal waste, municipal waste have different mass ratio of nitrogen which is presented as a symbol of $\delta^{15}$N. and that the values of $\delta^{15}$N for fertilizer and natural soil nitrogen and animal waste are placed less than +5$\textperthousand$ and higher than +10$\textperthousand$, respectively. thus, Nitrogen pollution sources and contribution can be interpreted in watershed through $\delta^{15}$N analysis and then, analysis is performed with Kjeldhl-Dumas method. In this study, The values of $\delta^{15}$N are between +1.46$\textperthousand$ and +8.97$\textperthousand$, and the nitrate concentration is placed less than 3.31mg/L and higher than 0.19mg/L, respectively. Thus, this watershed is noncontamination area at the present time. But as a result of $\delta^{15}$N, contribution of natural soil nitrogen be discovered in this watershed, presently.

  • PDF

Uptake of Carbon and Nitrogen by Microcystis Algal Assemblages in the Seonakdong River

  • Lee, Ok-Hee;Cho, Kyung-Je
    • ALGAE
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2004
  • Carbon ($^{14}CO_2$) and nitrogen ($^{15}NH_4$ and $^{15}NO_3$) uptake were measured at two stations in the hypertrophic zone of the Seonakdong River, where Microcystis aeruginosa explosively bloomed in September 1998. Significant nitrogen limitation occurred in the period of Microcystis bloom, while phosphorus limitation was common in the river. The specific nitrogen ($NH_4$ + $NO_3$) uptake was 12-50 $\mu$mol mg chl-a$^{-1}$ hr$^{-1}$ at two stations, showing substantially higher than for any other freshwaters. The specific nirtogen uptake was higher at the GAR Station of the nitrogen-limited area and this high nirtogen uptake resulted in low $^{14}C:^{15}N$ atomic ratios of algal uptake. Carbon uptake was dependent upon irradiance, decreasing gradually toward the bottom in the euphotic zone, whereas the nitrogen uptake increased slightly toward the bottom. $NH_4$ preferable uptake against $NO_3$ was hardly discemilble due to the fact that it exceeded the $NH_4$ ambient concentraiton. The $^{14}C:^{15}N$ atomic ratios of algal uptake in the surface waters approached the Redfield C:N ratio.

중질소(重窒素)를 이용(利用)한 수도품종(水稻品種) 및 시용시기(施用時期)에 따른 토양(土壤) 및 시비질소(施肥窒素)의 효율 III. $^{15}N$ 비료(肥料)의 추비포장시험(追肥圃場試驗) (Efficiency of Soil and Fertilizer Nitrogen in relation to Rice Variety and Application Time, Using $^{15}N$ Labeled Fertilizer III. Top-dressing with $^{15}N$ fertilizer in fields)

  • 박훈;석순종
    • Applied Biological Chemistry
    • /
    • 제25권3호
    • /
    • pp.142-149
    • /
    • 1982
  • 유수형성기추비(幼穗形成期追肥)(30%)한 표식질소(慓識窒素)의 이용율(利用率)은 $23{\sim}61%$(5개포장(個圃場))였으며 품종간차이(品種間差異)가 없었다. 고수답(高收沓)에서 추비질소(追肥窒素)의 이용율(利用率)이 컸으며 식물체내비료(植物體內肥料) 유래질소(由來窒素)의 50% 이상(以上)이 유수형성기이후(幼穗形成期以後)에 흡수(吸收)된 것으로 보였다. 정조(正租)에서 중질소과잉율(重窒素過剩率)이 가장 컸으며 이는 추비(追肥)된 질소(窒素)가 정조(正租)로 쉽게 전류(轉流)됨을 나타낸다. 일반계(一般系)보다 통일계(統一系)에서 정조(正租)와 엽간(葉間)의 중질소과잉율(重窒素過剩率)의 차이(差異)가 커서 통일계(統一系)에서 질소(窒素)의 전류(轉流)가 빠른것을 나타낸다. 지상부추비유래질소(地上部追肥由來窒素)는 $14{\sim}27%$였다. 특별(特別)한 관리(管理)를 한다면 포장조건(圃場條件)에서 중질소이용(重窒素利用)한 시험(試驗)은 처리당(處理當) 2구(區)에 구당(區當) 3주(株)로 충분(充分)할 것 같다.

  • PDF

The Response of Nitrogen Deposition to Methane Oxidation Availability and Microbial Enzyme Activities in Forest Soils

  • Jang, In-Young;Lee, Hyoung-Min;Kang, Ho-Jeong
    • Environmental Engineering Research
    • /
    • 제15권3호
    • /
    • pp.157-161
    • /
    • 2010
  • Forest soils are often nitrogen-limited, and nitrogen input to forest soils can cause substantial changes in the structure and functions of a soil ecosystem. To determine the effects of nitrogen input on methane oxidation and the microbial enzyme activities, manipulation experiments were conducted using nitrogen addition to soil samples from Mt. Jumbong. Our findings suggested that the addition of nitrogen to the soil system of Mt. Jumbong did not affect the microbial enzyme activities. Conversely, the addition of nitrogen affected the rate of methane oxidation. Inorganic nitrogen in soils can inhibit methane oxidation via several mechanisms, such as substrate competition, toxic effects, and competition with other microbes, but the inhibitory effects are not always the same. In this research, seasonal changes were found to produce different inhibitory factors, and these different responses may be caused from differences in the methantrophic bacteria community structure.

Effect of Planting Density and Nitrogen Level on Growth and Yield in Heavy Panicle Weight Type of Japonica Rice

  • Kim, Bo-Kyeong;Kim, Hyun-Ho;Ko, Jae-Kwon;Shin, Hyun-Tak
    • 한국작물학회지
    • /
    • 제44권2호
    • /
    • pp.106-111
    • /
    • 1999
  • To investigate the effects of planting density and nitrogen level on growth and yield potential of newly bred heavy panicle japonica rice with large grain (Iksan 435 and Iksan 438) or many spikelets per panicle(HR14022-21-8-4 and HR14022-21-8-6), four heavy panicle type rices and two many panicle type rices(Dongjinbyeo and Donganbyeo) as the checks were planted under standard planting density (30$\times$15 cm) and dense planting density (15$\times$15 cm) with two nitrogen levels of standard nitrogen level(110 kg h $a^{-1}$) and heavy nitrogen level(165 kg h $a^{-1}$). Effective tiller rate decreased in dense planting or heavy nitrogen, when compared to standard nitrogen and planting, while leaf area index and to dry weight increased in dense planting or heavy nitrogen. Tiller numbers and panicle numbers were more increased by dense planting than heavy nitrogen, whereas spikelet numbers were more increased by heavy nitrogen than dense planting. Ripened grain ratio was slightly lower only in dense planting. 1,000 grain weight in brown rice was not significantly different in dense planting or heavy nitrogen. Milled rice yield was highest in heavy nitrogen with standard planting for heavy panicle type rice, while yield for many panicle type rice was highest in heavy nitrogen with dense planting, suggesting that many panicle type rice possesses higher adapt-ability for dense planting than heavy panicle type rice. Path coefficient analysis revealed that top dry weight, spikelet number and grain weight were the greatest positive contributors to yield, whereas tiller number was negative to yield.d.

  • PDF

Stable C and N Isotopes: A Tool to Interpret Interacting Environmental Stresses on Soil and Plant

  • Yun, Seok-In;Ro, Hee-Myong
    • Journal of Applied Biological Chemistry
    • /
    • 제51권6호
    • /
    • pp.262-271
    • /
    • 2008
  • Natural abundances of stable isotopes of nitrogen and carbon (${\delta}^{15}N$ and ${\delta}^{13}C$) are being widely used to study N and C cycle processes in plant and soil systems. Variations in ${\delta}^{15}N$ of the soil and the plant reflect the potentially variable isotope signature of the external N sources and the isotope fractionation during the N cycle process. $N_2$ fixation and N fertilizer supply the nitrogen, whose ${\delta}^{15}N$ is close to 0%o, whereas the compost as. an organic input generally provides the nitrogen enriched in $^{15}N$ compared to the atmospheric $N_2$. The isotope fractionation during the N cycle process decreases the ${\delta}^{15}N$ of the substrate and increases the ${\delta}^{15}N$ of the product. N transformations such as N mineralization, nitrification, denitrification, assimilation, and the $NH_3$ volatilization have a specific isotope fractionation factor (${\alpha}$) for each N process. Variation in the ${\delta}^{13}C$ of plants reflects the photosynthetic type of plant, which affects the isotope fractionation during photosynthesis. The ${\delta}^{13}C$ of C3 plant is significantly lower than, whereas the ${\delta}^{13}C$ of C4 plant is similar to that of the atmospheric $CO_2$. Variation in the isotope fractionation of carbon and nitrogen can be observed under different environmental conditions. The effect of environmental factors on the stomatal conductance and the carboxylation rate affects the carbon isotope fractionation during photosynthesis. Changes in the environmental factors such as temperature and salt concentration affect the nitrogen isotope fractionation during the N cycle processes; however, the mechanism of variation in the nitrogen isotope fractionation has not been studied as much as that in the carbon isotope fractionation. Isotope fractionation factors of carbon and nitrogen could be the integrated factors for interpreting the effects of the environmental factors on plants and soils.

Nitrogen-15 Determination in Tissues of Laying Hens Fed on Different Levels of $^{15}N-Chlorocholine$ Chloride ($^{15}N-CCC$) Diets

  • Nurhayati, Nurhayati;Thinggaard, Grete;Chakeredza, S.;Reineking, A.;Langel, R.;ter Meulen, U.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권3호
    • /
    • pp.412-417
    • /
    • 2007
  • An experiment was conducted to determine the distribution of nitrogen-15 in tissues of laying hens receiving different levels of $^{15}N$-CCC in diets. Twenty brown laying hens were divided into four groups and randomly assigned into one of four dietary treatment groups consisting of 0, 5, 50 and 100 ppm $^{15}N$-CCC inclusion. The hens were individually fed with the $^{15}N$-CCC diets in battery cages for 11 days and then all hens restored to feeding on the control diet for 7 days. After eleven days, eight hens were slaughtered, and the others were slaughtered seven days after $^{15}N$-CCC diets withdrawal. Samples of blood, liver, heart and meat were collected and their $^{15}N$ contents were determined. The ${\delta}^{15}N$ excess (${\delta}^{15}N$-ex) and atom percentage excess in $^{15}N$ were calculated. The ${\delta}^{15}N$-ex and atom percentage excess $^{15}N$ increased significantly (p<0.05) with increasing levels of $^{15}N$-CCC in diets in all tissues after feeding $^{15}N$-CCC diets for eleven days. The highest concentration of ${\delta}^{15}N$-ex and atom percentage excess $^{15}N$ were detected in blood, followed in order by liver, heart and thigh meat. The concentrations reduced significantly (p<0.05) after $^{15}N$-CCC diets were withdrawn. Comparison between treatment groups showed that ${\delta}^{15}N$-ex and atom percentage excess $^{15}N$ were still higher in hens that had been fed diets with higher levels of $^{15}N$-CCC. This study showed that nitrogen-15 was distributed in blood, liver, heart and meat of laying hens.

Effect of microporosity on nitrogen-doped microporous carbons for electrode of supercapacitor

  • Cho, Eun-A;Lee, Seul-Yi;Park, Soo-Jin
    • Carbon letters
    • /
    • 제15권3호
    • /
    • pp.210-213
    • /
    • 2014
  • Nitrogen-doped microporous carbons were prepared using a polyvinylidene fluoride/melamine mixture. The electrochemical performance of the nitrogen-doped microporous carbons after being subjected to different carbonization conditions was investigated. The nitrogen to carbon ratio and specific surface area decreased with an increase in the carbonization temperature. However, the maximum specific capacitance of 208 F/g was obtained at a carbonization temperature of $800^{\circ}C$ because it produced the highest microporosity.

질산염 및 식물플랑크톤의 안정동위원소비를 이용한 팔당호 수계내의 질소원 기원 연구 (Determination of the Origin in both Dissolved Inorganic Nitrogen and Phytoplankton at the Lake Paldang using Stable Isotope Ratios (δ13C, δ15N, δ15N-NO3 and δ15N-NH4))

  • 김민섭;이은정;윤숙희;임보라;박재선;박현우;정현미;최종우
    • 생태와환경
    • /
    • 제50권4호
    • /
    • pp.452-458
    • /
    • 2017
  • 본 연구는 암모니아성 질소 및 질산성 질소의 안정동위원소 분석방법을 적용하여, 호소 내 식물플랑크톤 성장에 영향을 미치는 외부 오염원의 기원을 추정함으로써, 효율적인 수질 관리 및 수생태계 기능해석 지원기능을 제공하기 위하여 연구하였다. 남한강, 북한강, 팔당호 지역에 비해서 경안천 지역의 유기물 기원이 뚜렷하게 차이를 보이며, 외부기원 유기물이 높은 영향을 미치는 것으로 여겨진다. 또한 식물플랑크톤(규조류, 남조류)이 자생기원 보다는 외부기원 질소원을 활용하고 있음을 확인하였다. 한강 유역에서 암모니아성 질소 및 질산성 질소의 안정동위원소비를 이용한 유기물 기원 연구는 적용가능 할 것으로 여겨지며, 식물플랑크톤의 탄소 및 질소 동위원소비를 활용하여 그 거동을 추정할 수 있었다. 추후 유역 오염원의 대표 값(end member)의 지속적인 조사를 통하여 자료구축이 이루어져야 할 것이다.

저장탄수화물과 질소의 월동성과 재생활력에 대한 이용성 II. 추파 유채 ( Brassica napus L. ) 의 파종밀도가 월동중 저장유기물 함량 및 수량에 미치는 영향 (Partitioning of Carbon and Nitrogen Reserves During Winter Adaptation and Spring Regrowth II. Effect of seeding density on the content of organic reserves on the wintering period and forage yeild in rape ( Brassica napus L. ))

  • 김태환;김기원;정우진;전해열;김병호
    • 한국초지조사료학회지
    • /
    • 제15권4호
    • /
    • pp.231-237
    • /
    • 1995
  • The objective of this study is to obtain the basic data for investigating the effects of organic reserves on winter survival or regrowth yield. Forage rape (Brassica napus L.) was sown by three seeding densities of 5, 15 and 25cm interval among plants on Sep. 1, 1994. Field-grown plants were sampled on the before wintering (Dec. 4) and on the wintering period (Jan. 16) to analyze the nitrogen and non-structural cahohydrate reserves. The rate of winter survival and regrowth yield were also measured in the spring of next year. The dry matter yields from the plots of 5, 15 and 25cm seeding interval were 1,270, 1.01 9 and 1,062 kg/lOa respectively, on the before wintering. The similar pattern wa5 observed in the crude protein yields affected by seeding density. On the before wintering, both of nitrogen and starch contents per plant significantly increased as the seeding density was lowered. Starch content was relatively higher than that of nitrogen in all plots. On the wintering period, the contents of nitrogen reserves were 6.5, 41.2 and 121.7 mglplant, those of starch reserves were 1.0, 5.4 and 185.1 mg/plant, respectively, in the plots of 5, 15 and 25cm seeding interval. Nitrogen reserves on the wintering period increased while starch reserves highly decreased in all plots comparing to the before wintering. 'lhe rates of winter survival were 10.2, 20.6 and 37.1%, and regrowth yields were 76, 96 and 178 kgD.M/ IOa, respectively, in the plots of 5, 15 and 25cm seeding interval. These results cleariy showed that seeding density have a close influence on the level of nitrogen and non-structurd cahohydrate reserves, and that the rate of winter survival and regrowth yield were controlled by reserves level on the wintering period.

  • PDF