• Title/Summary/Keyword: 14 MeV

Search Result 152, Processing Time 0.026 seconds

Scintillation Characteristics of CsI:X(X=Li+,K+,Rb+ Single Crystals (CsI:X(X=Li+,K+,Rb+단결정의 섬광특성)

  • Gang, Gap-Jung;Doh, Sih-Hong;Lee, Woo-Gyo;Oh, Moon-Young
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • CsI single crystals doped with lithium, potassium or rubidium were grown by using Czochralski method at Ar gas atmosphere. The energy resolutions of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators were 14.5%, 15.9% and 17.0% for $^{137}Cs$(0.662 MeV), respectively. The energy calibration curves of CsI(Li), CsI(K) and CsI(Rb) scintillators were linear for $\gamma$-ray energy. The time resolutions of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators measured by CFT(constant-fraction timing method) were 9.0 ns, 14.7 ns and 9.7 ns, respectively. The fluorescence decay times of CsI(Li:0.2 mole%) scintillator had a fast component and slow one of ${\tau}_1=41.2\;ns$ and ${\tau}_2=483\;ns$, respectively. The fluorescence decay times of CsI(K:0.5 mole%) scintillator were ${\tau}_1=47.2\;ns$ and ${\tau}_2=417\;ns$. And the fluorescence decay times of CsI(Rb:1.5 mole%) scintillator were ${\tau}_1=41.3\;ns$ and ${\tau}_2=553\;ns$. The phosphorescence decay times of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators were 0.51 s, 0.57 s and 0.56 s, respectively.

Response of LiF Thermoluminescent Dosimeter to Gamma-Rays as a Cavity Detector (LiF 열형광선량계(熱螢光線量計)의 감마선(線)에 대한 공동검출기(空洞檢出器)로서의 감응(感應))

  • Ha, C.W.;Yook, C.C.;Jun, J.S.
    • Journal of Radiation Protection and Research
    • /
    • v.1 no.1
    • /
    • pp.10-14
    • /
    • 1976
  • Influence of the cavity size on the response of LiF TLD was theoretically investigated for a presumed system of spherical TLD cavity imbedded in a medium of polyethylene. Calculation of the response for different radii of the spherical cavity was carried out as a function of incident photon energy, applying recent cavity theory. The range of the radii covers 1.578 to 6.528 mm, while that of the incident photon energies extends from 0.02 to 3.0 MeV. As a results, the response of the LiF TLD imbedded in a medium as a cavity was found to be functions of its own size as wall as the incident photon energy.

  • PDF

Development of the EGS4 Control Code to Calculate the Dose Distributions in a Strong Magnetic Field (자기장이 인가된 물팬텀 속의 전자선 선량분포 계산을 위한 EGS4 제어코드의 개발과 응용)

  • 정동혁;오영기;신교철;김진기;김기환;김정기;이강규;문성록;김성규
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • In this work we developed a EGS4 control code to calculate the dose distributions for high energy electron beams in water phantom applied longitudinal magnetic field. We reviewed the electron's motion in magnetic field and delivered equations for direction changs of the electron by the external magnetic field. The mathematical results are inserted into the EGS4 code system to account for the presence of external magnetic fields in phantom. The electron pencil beam paths of 6 MeV in water phantom are calculated for magnetic fields of 1-3 T and the dose distributions for a field of 1.0 cm in diameter are calculated for magnetic fields of 0.6-1 T using the code. From the results of path calculations we found that the lateral ranges of the electrons are reduced in the magnetic field of 3 T. For a field of 1 cm diameter and a magnetic field of 1 T, the small dose enhancement near the range of the electrons on the depth dose and the penumbra reduction of 0.15 cm on the beam profile are observed. We discussed and evaluated the results from the theoretical concepts.

  • PDF

Proton Irradiated Cz-Si by the Coincidence Doppler Broadening Positron Annihilation Spectroscopy (동시계수 양전자 소멸 측정에 의한 양성자 조사된 Si 구조 특성)

  • Lee, K.H.;Lee, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.367-373
    • /
    • 2011
  • It is described that the proton beam induces micro defects and electronic deep levels in Cz single crystal silicon. Enhance signal-to-noise ratio, Coincidence Doppler Broadening Positron Annihilation Spectroscopy has been applied to study of characteristics of p type and n type silicon samples. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. The samples were exposed by 4.0 MeV proton beams ranging from 0 to ${\sim}10^{14}$ ptls. The S-parameter values were increased as increasing the irradiated proton beam, that indicated the defects generate more.

Investigation of Proton Irradiated Effect on n, p type Silicon by Positron Annihilation Method (양전자 소멸 측정에 의한 n, p형 실리콘 구조 특성)

  • Lee, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.225-232
    • /
    • 2012
  • It is described that the proton beam induceds micro-size defects and electronic deep levels in n or p type single crystal silicon. Positron lifetime and Coincidence Doppler Broadening Positron Annihilation Spectroscopy were applied to study of characteristics of p type and n type silicon samples. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. The samples were exposed by 3.98 MeV proton beams ranging between 0 to ${\sim}10^{14}$ particles. The S-parameter values strongly depend on the irradiated proton beam, that indicated the defects generate more. Positron lifetime shows that positrons trapped in vacancies and lifetime ${\tau}_2$ increased according to proton irradiation.

Characterization of saturation of CR-39 detector at high alpha-particle fluence

  • Ghazaly, M. El;Hassan, Nabil M.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.432-438
    • /
    • 2018
  • The occurrence of saturation in the CR-39 detector reduces and limits its detection dynamic range; nevertheless, this range could be extended using spectroscopic techniques and by measuring the net bulk rate of the saturated CR-39 detector surface. CR-39 detectors were irradiated by 1.5 MeV high alpha-particle fluence varying from $0.06{\times}10^8$ to $7.36{\times}10^8\;alphas/cm^2$ from Am-241 source; thereafter, they were etched in a 6.25N NaOH solution at a temperature of $70^{\circ}C$ for different durations. Net bulk etch rate measurement of the 1.5 MeV alpha-irradiated CR-39 detector surface revealed that rate increases with increasing etching time and reaches its maximum value at the end of the alpha-particle range. It is also correlated with the alpha-particle fluence. The measurements of UV-Visible (UV-Vis) absorbance at 500 and 600 nm reveal that the absorbance is linearly correlated with the fluence of alpha particles at the etching times of 2 and 4 hour. For extended etching times of 6, 10, and 14.5 hour, the absorbance is saturated for fluence values of $4.05{\times}10^8$, $5.30{\times}10^8$, and $7.36{\times}10^8\;alphas/cm^2$. These new methods pave the way to extend the dynamic range of polymer-based solid state nuclear track detectors (SSNTDs) in measurement of high fluence of heavy ions as well as in radiation dosimetry.

A Study on Activation Characteristics Generated by 9 MeV Electron Linear Accelerator for Container Security Inspection (컨테이너 보안 검색용 9 MeV 전자 선형가속기에서 발생한 방사화 특성평가에 관한 연구)

  • Lee, Chang-Ho;Kim, Jang-Oh;Lee, Yoon-Ji;Jeon, Chan-Hee;Lee, Ji-Eun;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.563-575
    • /
    • 2020
  • The purpose of this study is to evaluate the activation characteristics that occur in a linear accelerator for container security inspection. In the computer simulation design, first, the targets consisted of a tungsten (Z=74) single material target and a tungsten (Z=74) and copper (Z=29) composite target. Second, the fan beam collimator was composed of a single material of lead (Z=82) and a composite material of tungsten (Z-74) and lead (Z=82) depending on the material. Final, the concrete in the room where the linear accelerator was located contained magnetite type and impurities. In the research method, first, the optical neutron flux was calculated using the MCNP6 code as a F4 Tally for the linear accelerator and structure. Second, the photoneutron flux calculated from the MCNP6 code was applied to FISPACT-II to evaluate the activation product. Final, the decommissioning evaluation was conducted through the specific activity of the activation product. As a result, first, it was the most common in photoneutron targets, followed by a collimator and a concrete 10 cm deep. Second, activation products were produced as by-products of W-181 in tungsten targets and collimator, and Co-60, Ni-63, Cs-134, Eu-152, Eu-154 nuclides in impurity-containing concrete. Final, it was found that the tungsten target satisfies the permissible concentration for self-disposal after 90 days upon decommissioning. These results could be confirmed that the photoneutron yield and degree of activation at 9 MeV energy were insignificant. However, it is thought that W-181 generated from the tungsten target and collimator of the linear accelerator may affect the exposure when disassembled for repair. Therefore, this study presents basic data on the management of activated parts of a linear accelerator for container security inspection. In addition, When decommissioning the linear accelerator for container security inspection, it is expected that it can be used to prove the standard that permissible concentration of self-disposal.

A study on the photoreflectance of B ion implanted GaAs (B 이온을 주입시킨 GaAs의 Photoreflectance에 관한 연구)

  • 최현태;배인호
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.372-378
    • /
    • 1996
  • The phtoreflectance(PR) spectra of B ion implanted semi-insulating(SI) GaAs were studied. Ion implantation was performed by 150keV implantation energy and 1*10/aup 12/-10$^{15}$ ions/c $m^{2}$ doses. Electronic band structure was damaged by ion implantation with above 1*10$^{13}$ ions/c $m^{2}$ dose. When samples were annealed, " peak was observed at 30-40meV below band gap( $E_{g}$). It should be noted that this energy is close to the ionization energies of S $i_{As}$ , and GeAs in G $a_{As}$ which are also found as impurities in LEC GaAs, it is therefore possible that this feature is related to S $i_{As}$ , or G $e_{As}$ and B ions by implanted defect associated with them. From PR spectra of etched samples which is as-implanted by 1*10$^{14}$ and 1*10$^{15}$ ions/c $m^{2}$ dose, the depth of destroyed electronic band structure was from surface to 0.2.mu.m below surface.nic band structure was from surface to 0.2.mu.m below surface.

  • PDF

Chemical Constituents of Lathyrus davidii

  • Park, Su-Yeon;Kim, Ju-Sun;Lee, So-Young;Bae, Ki-Hwan;Kang, Sam-Sik
    • Natural Product Sciences
    • /
    • v.14 no.4
    • /
    • pp.281-288
    • /
    • 2008
  • From the MeOH extract of the whole plants of Lathyrus davidii (Fabaceae), thirteen constituents were isolated and identified as the flavonoids astragalin, isoquercitrin, nicotiflorin, and rutin, as the saponins soyasapogenol B 3-O-${\beta}$-D-glucuronopyranoside, azukisaponins II and V, soyasaponins II and V and as 4-O-${\beta}$-Dglucopyranosyl syringic acid, uracil and n-hexacosanol. Five saponins and 4-O-${\beta}$-D-glucopyranosyl syringic acid were isolated from the BuOH fraction as their methyl esters. Ombuoside (rutin 7,4'-di-O-methyl ether) was also isolated from the methylated BuOH-soluble fraction. However, no ombuoside was detected in the HPLC analysis of the nonmethylated BuOH fraction. Therefore, ombuoside is an artifact derived from methylation of rutin. All of these compounds were isolated for the first time from this plant.

Effect of Phonons on Valley Depolarization in Monolayer WSe2

  • Chellappan, Vijila;Pang, Ai Lin Christina;Sarkar, Soumya;Ooi, Zi En;Goh, Kuan Eng Johnson
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.766-773
    • /
    • 2018
  • In this paper, temperature dependence of the excitonic bands in a mechanically exfoliated tungsten diselenide ($WSe_2$) monolayer is studied using photoluminescence and circular dichroic photoluminescence (PL) in the temperature range between 8 and 300 K. The peak energies associated with the neutral exciton (A), charged exciton (trion) and localized excitons are extracted from the PL spectra revealing a trion binding energy of around 30 meV. The circular dichroic PL measured at 8 K shows about 45% valley polarisation that sharply reduces with increasing temperature to 5% at 300 K with photoexcitation energy of 1.96 eV. A detailed analysis of the emission line-width suggests that the rapid decrease of valley polarisation with the increase of temperature is caused by the strong exciton-phonon interactions which efficiently scatter the excitons into different excitonic states that are easily accessible due to the supply of excess photoexcitation energy. The emission line-width broadening with the increase of temperature indicate residual exciton dephasing lifetime < 100 fs, that correlates with the observed rapid valley depolarisation.