• Title/Summary/Keyword: 13mm aggregate

Search Result 87, Processing Time 0.025 seconds

A Study on Application of Warm-Mix Quiet Pavement Using Fine-Size Aggregate (소입경 골재를 이용한 중온 저소음 아스팔트 포장의 적용 연구)

  • Jo, Shinhaeng;Baek, Yujin;Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.1
    • /
    • pp.56-64
    • /
    • 2013
  • The study examines the quiet pavement using fine-size aggregates and warm-mix technique to reduce traffic noise. In order to evaluate the quality of pavement, mix design and laboratory tests were carried out. Test results showed that using 10mm aggregates can reduce the cantabro loss compared with 13mm aggregates due to increase contact area between aggregates. Mixing and compaction temperatures of warm mix quiet pavement should be determined by gyratory compactor test because it is used high viscosity asphalt binder. Using warm-mix additive could reduce compaction temperature by about $15^{\circ}C$. Noise measurement and permeability tests were conducted at the test road for evaluation of the field performance. All of quiet pavements meet the standard of permeability and have sufficient porosity. Noise reduction of the quiet pavement using fine-size aggregates is more effective than that using 13mm aggregates. In particular, the effect of noise reduction was noticeable at low speeds.

A Study of Characteristics Change of Low-Shrinkage Normal Strength Concrete According to Mixing Factors and curing Temperature (배합요인과 양생온도에 따른 일반강도 초저수축 콘크리트의 특성 변화 연구)

  • Jeong, Jun-Young;Min, Kyung-Hwan;Lee, Dong-Gyu;Choi, Hong-sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.342-347
    • /
    • 2016
  • This study examined the effects of the coarse aggregate maximum size and grading of fine aggregates to acquire the characteristics of very low shrinkage on normal strength concrete mixed in the field. In addition, the shrinkage characteristics of concrete under construction were evaluated in accordance with the curing temperature. The compressive strength and drying shrinkage tests were performed for nine mixing factors composed of the coarse aggregate size (13, 20, and 25 mm), types of fine aggregate (see sand, crushed sand, and blended sand), and curing temperatures (5, 20, and $35^{\circ}C$). To acquire low shrinkage properties under $350{\mu}{\varepsilon}$ strain on normal strength concrete, a 25 mm maximum of coarse aggregate was available, and the grading of fine aggregate affected the shrinkage of concrete. In addition, very low shrinkage properties were acquired in the curing temperature range except cold and hot weather concrete.

Fundamental Study on the Application of a Surface Layer using Cold Central-Plant Recycling (플랜트 생산 재활용 상온 혼합물의 도로 표층 적용성에 관한 기초연구)

  • Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • PURPOSES : This study determined the optimal usage rate of RAP (reclaimed asphalt pavement) using cold central-plant recycling (CCPR) on a road-surface layer. In addition, a mixture-aggregate gradation design and a curing method based on the proposed rate for the surface-layer mix design were proposed. METHODS : First, current research trends were investigated by analyzing the optimum moisture content, mix design, and quality standards for surface layers in Korea and abroad. To analyze the aggregate characteristics of the RAP, its aggregate-size characteristics were analyzed through the combustion asphalt content test and the aggregate sieve analysis test. Moreover, aggregate-segregation experiments were performed to examine the possibility of RAP aggregate segregation from field compaction and vehicle traffic. After confirming the RAP quality standards, coarse aggregate and fine aggregate, aggregate-gradation design and quality tests were conducted for mixtures with 40% and 50% RAP usage. The optimum moisture content of the surface-layer mixture containing RAP was tested, as was the evapotranspiration effect on the surface-layer mixture of the optimum moisture content. RESULTS : After analyzing the RAP recycled aggregate size and extraction aggregate size, 13-8mm aggregate was found to be mostly 8mm aggregate after combustion. After using surface-chipping and mixing methods to examine the possibility of RAP aggregate segregation, it was found that the mixing method contributed very little for 3.32%, and because the surface-chipping method applied compaction energy directly as the maximum assumption the separation ratio was 15.46%. However, the composite aggregate gradation did not change. Using a 40% RAP aggregate rate on the surface-layer mixture for cold central-plant recycling satisfied the Abroad quality standard. The optimum moisture content of the surface-layer mixture was found to be 7.9% using the modified Marshall compaction test. It was found that the mixture was over 90% cured after curing at $60^{\circ}C$ for two days. CONCLUSIONS : To use the cold central-plant recycling mixture on a road-surface layer, a mixture-aggregate gradation design was proposed as the RAP recycled aggregate size without considering aggregate segregation, and the RAP optimal usage rate was 40%. In addition, the modified Marshall compaction test was used to determine the optimum moisture content as a mix-design parameter, and the curing method was adapted using the method recommended by Asphalt Recycling & Reclaiming Association (ARRA).

Strength Characteristics of Soil Concrete Using Jeju Volcaniclastic and Construction Techniques (제주도 석산 부산물인 화산토를 사용한 흙포장의 강도 및 시공 특성)

  • Hong, Chong-Hyun
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • In this study, a series of soil concrete mixtures were tested for the compressive strength according to ratio of aggregate to binder, compaction energy, maximum aggregate size, ratio of silica fume to cement, and ratio of water to binder. The optimum mixing ratio of soil concrete mixtures composed of volcaniclastic, cement, silica fume, concrete polymer and water were analysed. The test results for optimum proportion were as follows ; (1)ratio of aggregate to binder was 4 : 1, (2)compaction energy level was level 2, (3)maximum aggregate size was 13 mm, (4)ratio of silica fume to cement was 10%, (5)ratio of water to binder was 25%. Also, dry type construction techniques were applied using the optimum soil concrete mixture. From the results of this study, the compressive strength of soil concrete and construction techniques were suitable for making eco-friendly soil pavement.

Mechanical Properties of Permeable Polymer Concrete for Permeability Pavement with Recycled Aggregate and Fiber Volume Fraction (재생골재 및 섬유 혼입률에 따른 포장용 투수성 폴리머 콘크리트의 역학적 특성)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.69-77
    • /
    • 2010
  • Research on permeable pavement like asphalt and concrete pavement with porous structure has been increasing due to environmental and functional need such as reduction of run off and flood, and increase and purification of underwater resource. This study was performed to evaluate permeability, strengths and durability of permeable polymer concrete (PPC) using recycled aggregate that is obtained from waste concrete. Also, 6mm length of polypropylene fiber was used to increase toughness and interlocking between aggregate and aggregate surrounded by binder. In the test results, regardless of kinds of aggregates and fiber contents, the compressive strength and permeability coefficient of all types of PPC showed the higher than the criterion of porous concrete that is used in permeable pavement in Korea. Also, strengths of PPC with increase polypropylene fiber volume fraction showed slightly increased tendency due to increase binder with increase of fiber volume fraction. The weight reduction ratios for PPC after 300 cycles of freezing and thawing were in the range of 1.6~3.8 % and 2.2~5.6 %, respectively. The weight change ratio was very low regardless of the fiber volume fraction and aggregates. The weight reduction ratios of PPC with fiber and aggregate were in the range of 1.3~2.7 % and 2.2~3.2 % after 13 weeks and was very low regardless of the fiber volume fraction and aggregates.

Effect of the Degree of Weathering on the Distribution of Aggregate Particle Size and the Generation of Fine Rock Particles during Crushing of Granite (화강암 파쇄시 풍화정도가 골재 입도분포 및 미석분 발생에 미치는 영향)

  • You, Byoung-Woon;Lee, Jin-Young;Lee, Dong-kil;Cheong, Young-Wook
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.429-438
    • /
    • 2022
  • This study evaluated the effect of the degree of weathering on the particle size distribution and the amount of fine particles generated in the aggregate production process during the crushing of igneous rock. Rock samples were collected from three areas with differences in strength from the Schmith hammer measurement at the aggregate quarry in Geochang, Gyeongsangbuk-do. After crushing with a jaw crusher under the same conditions in laboratory, particle size analysis, mineral analysis, chemical analysis, and weathering index were calculated. The Schmidt hammer measurements were 56, 28, and <10, and the CIA and CIW values of weathering index were also different, so the rock samples were classified into hard rock, soft rock, and weathered rock according to the weathering degree. It shows a smaller particle size distribution toward weathered rocks under the microscope, and the proportion of altered clay minerals such as sericite increased. The composition of feldspar and quartz was high for hard rock, and the ratio of muscovite and kaolinite was low. As a result of the crushing of the jaw crusher, hard rock produced a lot of coarse crushed material (13.2mm), while soft rock and weathered rock produced fine crushed material (4.75mm). The former showed the characteristics of the beta distribution curve, and the latter showed the bimodal distribution curve. The production of fine rock particles (based on 0.71mm of sieve, wt. %) increased to 13%<21%<22% in hard rock, soft rock, and weathered rock, and the greater the degree of weathering, the more fine rock particles were generated. The fine particles are recovered by the operation of the sand unit in the wet aggregate production process. Therefore, in order to minimize the amount of sludge generated in the aggregate production process, it was judged that a study on the optimal operation of cyclones could be necessary.

Study on the Bond Mechanism of the Reinforcing Bars by Casting Direction of Recycled Coarse Aggregate Concrete using Acoustic Emission Method (음향방출기법을 이용한 순환굵은골재 콘크리트의 타설방향에 따른 철근의 부착메커니즘에 관한 연구)

  • Jeon, Su-Man;Yun, Hyun-Do;You, Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.245-248
    • /
    • 2006
  • The objective of this study is to take the first step in creating a user-friendly health monitoring system for recycled aggregate concrete structure using acoustic emission(AE). Each specimen was a cube, the edge of which was 150mm. For pull-out tests, a steel rebar, 13mm in diameter, was embedded in the center of each specimen and casting directions(i.e., vertical and horizontal) were considered in this paper. The AE parameters were analyzed for damage levels(i.e. internal cracking stage, pull-out stage) of all specimens. Results from this study show that event, duration versus amplitude of a signal, showed a clear difference for different loading stages depending upon the concrete casting directions.

  • PDF

An Experimental Study on the Properties of the High Strength Crushed Sand Concrete Using Blast-Furnace Slag (고로슬래그를 사용한 고강도 부순모래 경화콘크리트의 물성에 관한 실험적 연구)

  • Choi, Young-Wha;Kim, Jong-In
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.3
    • /
    • pp.169-176
    • /
    • 2005
  • The purpose of this study is to develop the high strength crushed sand concrete in conditions of water binder ratios of 25, 30, 35% and blast-furnace slag substitutions of 0, 15, 30, 45%. Additionally, in case of water binder ratio of 30%, the maximum size of coarse aggregate is two kinds of 13, 19 mm. The conclusions of this study are as follows ; 1. The compressive strength appeared lower in early age as compared with that of plain concrete according to increasing of the blast-furnace slag substitution. But, the compressive strength was respectively 5, 6, 10% larger than that of plain concrete in case of 25, 30, 35% water binder ratios, 28 days, 30% blast-furnace slag substitution and 19mm coarse aggregate. 2. According to increasing of the blast-furnace slag substitution, the modulus of elasticity and the tensile strength of concrete increased. 3. The length change by the shrinkage increased when the larger coarse aggregate was used, and decreased according to higher blast-furnace slag substitution.

  • PDF

Strength and Durability Properties of Recycled Polymer Concrete Using Unsaturated Polyester Resin and Recycled Aggregates (불포화폴리에스터 수지와 재생골재를 이용한 재생 폴리머 콘크리트의 강도 및 내구 특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.97-103
    • /
    • 2009
  • This study was performed to evaluate the strength and durability properties of recycled polymer concrete using unsaturated polyester resin and recycled aggregates. Unsaturated polyester resin, natural and recycled aggregates and fly ash were used. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate sizes (5-10 and 5-25 mm) and unit binder contents (10% and 12%). Tests for the compressive and flexural strength, freezing and thawing and durability for 20% sulfuric solution were performed. The compressive and flexural strength of recycled polymer concrete were in the range of 85~97 MPa and 17.9~20.8 MPa, respectively. The strengths of recycled polymer concrete using recycled aggregate have similar or slightly decreased compared to polymer concrete using natural aggregate. After 300 cycles of freezing and thawing, weight decrease ratio and durability factor of recycled polymer concrete were in the range of 0.13~1.42% and 94~99, respectively.

Strength Characteristics of Rammed Earth Using Hwangtoh Binder

  • Hwang, Hey-Zoo;Yang, Jun-Hyuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • There has recently been a great deal of research into the appropriate building materials for eco-friendly construction. In the field of earth architecture, there have been walls made of pure earth or with rammed earth including a small amount of cement. The purpose of the study is to investigate the possibility increasing compressive strength through a more eco-friendly composition by using Hwangtoh binder rather than cement to increase the strength performance of rammed earth. It was found that the more the ratio of binder was increased, the more the strength was increased, but enhancement did not increase noticeably in the lower part that did not compact completely, and proper height to pour earth is 200 mm. When stone dust was added, compressive strength was lower than when adding fine aggregate and coarse aggregate, but a finer surface texture was provided.