• Title/Summary/Keyword: 11-bp duplication

Search Result 6, Processing Time 0.022 seconds

Detection of a Large White-Specific Duplication in D-loop Region of the Porcine MtDNA (돼지 mtDNA D-loop 지역의 Large White 특이 중복현상 탐지)

  • Kim, Jae-Hwan;Han, Sang-Hyun;Lee, Sung-Soo;Ko, Moon-Suk;Lee, Jung-Gyu;Jeon, Jin-Tae;Cho, In-Cheol
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.467-471
    • /
    • 2009
  • The entire D-loop region of the porcine mitochondrial DNA (mtDNA) was amplified from six pig breeds (Landrace, Duroc, Large White, Korean native pig, Berkshire, and Hampshire) using a primer set designed on the basis of reported porcine mtDNA sequences. From analyses through cloning, DNA sequencing and multiple sequence alignment, an 11-bp (TAAAACACTTA) duplication was observed after known tandem repetition in the D-loop region, which promoted hetroplasmy in mtDNA. Although the existence of the 11-bp duplication has been previously reported in Duroc and Japanese native pigs, there have not been any attempts to know the characteristics of this duplication in other breeds so far. A 150 bp fragment containing the 11-duplication was amplified and typed by polyacrylamide gel electrophoresis (PAGE). All Large Whites had two duplication units and Duroc showed heteromorphic patterns, 11.2% (9/80) of the animals had the 11-bp duplication in total. On the other hand, Landrace, Berkshire, Hampshire and Korean native pigs were non-duplicated. This result showed that the 11-bp duplication could be used as a breed-specific DNA marker for distinguishing pure Landrace and Large White breeds.

Fragment Analysis for Detection of the FLT3-Internal Tandem Duplication: Comparison with Conventional PCR and Sanger Sequencing (FLT3-ITD 검출을 위한 절편분석법: 일반 중합효소연쇄반응 및 직접염기서열분석법과의 비교)

  • Lee, GunDong;Kim, Jeongeun;Lee, SangYoon;Jang, Woori;Park, Joonhong;Chae, Hyojin;Kim, Myungshin;Kim, Yonggoo
    • Laboratory Medicine Online
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 2017
  • Background: We evaluated a sensitive and quantitative method utilizing fragment analysis of the fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD), simultaneously measuring mutant allele burden and length, and verified the analytical performance. Methods: The number and allelic burden of FLT3-ITD mutations was determined by fragment analysis. Serial mixtures of mutant and wild-type plasmid DNA were used to calculate the limit of detection of fragment analysis, conventional PCR, and Sanger sequencing. Specificity was evaluated using DNA samples derived from 50 normal donors. Results of fragment analysis were compared to those of conventional PCR, using 481 AML specimens. Results: Defined mixtures were consistently and accurately identified by fragment analysis at a 5% relative concentration of mutant to wild-type, and at 10% and 20% ratios by conventional PCR and direct sequencing, respectively. No false positivity was identified. Among 481 AML specimens, 40.1% (193/481) had FLT3-ITD mutations. The mutant allele burden (1.7-94.1%; median, 28.2%) and repeated length of the mutation (14-153 bp; median, 49 bp) were variable. The concordance rate between fragment analysis and conventional PCR was 97.7% (470/481). Fragment analysis was more sensitive than conventional PCR and detected 11 additional cases: seven had mutations below 10%, three cases represented conventional PCR failure, and one case showed false negativity because of short ITD length (14 bp). Conclusions: The new fragment analysis method proved to be sensitive and reliable for the detection and monitoring of FLT3-ITD in patients with AML. This could be used to simultaneously assess ITD mutant allele burden and length.

Complete Mitochondrial Genome Sequence and Genetic Diversity of Duroc Breed (돼지 Duroc 품종에서 미토콘드리아 유전체 서열의 특성과 집단의 유전적 다양성)

  • Cho, 1.C.;Han, S.H.;Choi, Y.L.;Ko, M.S.;Lee, J.G;Lee, J.H;Jeon, J .T
    • Journal of Animal Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.937-946
    • /
    • 2004
  • Duroc is widely used to improve the meat quality and productivity. To elucidate the phylogenetic relation and the sequence specificity for the maternal property, the complete sequence of mitochondrial genome was determined and the population diversity of Duroc was investigated in this study. The length of mtDNA tested is 16,584-bp. There are several insertion/deletion mutations in the control region and coding regions for tRNA and rRNA, respectively, but not in peptide-coding regions. Four peptide-coding genes(COⅡ, COⅢ, ND3 and ND4) showed incomplete termination codon sequences such as T--, and two(ND2 and ND4L) did alternative initiation codons(AIC), respectively. Especially, the initiation codon sequences of ND2 gene were polymorphic in this population. Polymorphisms were detected in 11-bp duplication motif within control region as well as ND2 and CYTB. Variation patterns observed from the tests on three mtDNA regions were linked completely and then two haplotypes obtained from combining the data dividing this population. Duroc mtDNA is observed at the European pig cluster in the phylogenetic tree, however, the results from the population analyses supported previous opinions. This study suggests that the breed Duroc was mainly originated from the European pig lineage, and Asian lineage was also used to form the pig breed Duroc as maternal progenitors.

Application of Breed-specific DNA Markers for the use of Identifying Major Pure Pig Breeds Maintained in Korea (대한민국내 주요 돼지 품종의 순종 식별을 위한 품종특이 DNA marker의 활용)

  • Seo, B.Y.;Kim, J.H.;Park, E.W.;Lim, H.T.;Cho, I.C.;Kim, B.W.;Oh, S.J.;Cheong, I.C.;Lee, J.G.;Jeon, J.T.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.735-742
    • /
    • 2004
  • This study was conducted for the identification of pure Landrace, Large White and Duroc breeds which are mainly maintained in Korea using DNA markers. We used known KIT and MC1R mutations, which were related coat color in pigs, and pig mitochondrial DNA variations. The KIT mutation was used to distinguish white and colored animals. Duroc breed could be discriminated from other colored breeds using the MC1R mutation N121D. Discriminating Landrace and Large White was possible using the l l-bp duplication of D-Ioop region and alternative initiation codon of ND2. In conclusion, identification of Landrace, Large White and Duroc breeds was might be possible using the procedure designed in this study.

Genomic Sequence Analysis and Organization of BmKαTx11 and BmKαTx15 from Buthus martensii Karsch: Molecular Evolution of α-toxin genes

  • Xu, Xiuling;Cao, Zhijian;Sheng, Jiqun;Wu, Wenlan;Luo, Feng;Sha, Yonggang;Mao, Xin;Liu, Hui;Jiang, Dahe;Li, Wenxin
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.386-390
    • /
    • 2005
  • Based on the reported cDNA sequences of $BmK{\alpha}Txs$, the genes encoding toxin $BmK{\alpha}Tx11$ and $BmK{\alpha}Tx15$ were amplified by PCR from the Chinese scorpion Buthus martensii Karsch genomic DNA employing synthetic oligonucleotides. Sequences analysis of nucleotide showed that an intron about 500 bp length interrupts signal peptide coding regions of $BmK{\alpha}Tx11$ and $BmK{\alpha}Tx15$. Using cDNA sequence of $BmK{\alpha}Tx11$ as probe, southern hybridization of BmK genome total DNA was performed. The result indicates that $BmK{\alpha}Tx11$ is multicopy genes or belongs to multiple gene family with high homology genes. The similarity of $BmK{\alpha}$-toxin gene sequences and southern hybridization revealed the evolution trace of $BmK{\alpha}$-toxins: $BmK{\alpha}$-toxin genes evolve from a common progenitor, and the genes diversity is associated with a process of locus duplication and gene divergence.

Structural Similarity and Expression Differences of Two Pj-Vg Genes from the Pandalus Shrimp Pandalopsis japonica

  • Jeon, Jeong-Min;Kim, Bo-Kwang;Kim, Young-Ji;Kim, Hyun-Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.1
    • /
    • pp.22-30
    • /
    • 2011
  • Vitellogenin (Vg) is the precursor of vitellin (Vn), which is the major yolk protein in nearly all oviparous species, including fish, amphibians, reptiles, and most invertebrates. It is one of the most important factors during reproduction, and numerous studies have shown that Vg genes are markers of the reproductive cycle and effecter genes induced by endocrine-disrupting chemicals (EDCs). Previously, we isolated two distinct cDNAs encoding vitellogenin homologs Pj-Vg1 and Pj-Vg2 from Pandalus shrimp Pandalopsis japonica. In this study, full-length genomic sequences of Pj-Vg1 and Pj-Vg2 were determined using a PCR-based genome walking strategy. Isolated Pj-Vg1 and Pj-Vg2 genes were 11,910 and 11,850 bp long, respectively. Both Pj-Vg genes had 15 exons and 14 introns, and the splicing sites were also the same, suggesting that they arose via gene duplication. The similar structural characteristics of decapod Vg genes suggest that they are all orthologs that evolved from the same ancestral gene. Analysis of Pj-Vg1 and Pj-Vg2 expression revealed that the relative copy numbers of Pj-Vg1 and Pj-Vg2 were similar in the hepatopancreas, whereas Pj-Vg2 transcripts were also detected in the ovary. Expression of both Pj-Vg genes was induced in hepatopancreas of mature individuals, whereas only Pj-Vg2 transcripts were upregulated in the ovaries from mature animals, suggesting that both Pj-Vgs are important for oocyte development. A strong positive correlation was found between Pj-Vg1 and Pj-Vg2 transcripts in the same individual, indicating they are under the same control mechanisms. Additionally, a positive correlation was found between ovarian and hepatopancreatic Pj-Vg2 transcripts, suggesting that its dual expression is regulated by similar physiological conditions. Knowledge of the similarities and differences between the two vitellogenin-like genes, Pj-Vg1 and Pj-Vg2, would help us to understand their roles in reproduction and other physiological effects.