• Title/Summary/Keyword: 10-fold Validation

Search Result 239, Processing Time 0.03 seconds

Assessment of wall convergence for tunnels using machine learning techniques

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Mohammadi, Mokhtar;Ibrahim, Hawkar Hashim;Mohammed, Adil Hussein;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.265-279
    • /
    • 2022
  • Tunnel convergence prediction is essential for the safe construction and design of tunnels. This study proposes five machine learning models of deep neural network (DNN), K-nearest neighbors (KNN), Gaussian process regression (GPR), support vector regression (SVR), and decision trees (DT) to predict the convergence phenomenon during or shortly after the excavation of tunnels. In this respect, a database including 650 datasets (440 for training, 110 for validation, and 100 for test) was gathered from the previously constructed tunnels. In the database, 12 effective parameters on the tunnel convergence and a target of tunnel wall convergence were considered. Both 5-fold and hold-out cross validation methods were used to analyze the predicted outcomes in the ML models. Finally, the DNN method was proposed as the most robust model. Also, to assess each parameter's contribution to the prediction problem, the backward selection method was used. The results showed that the highest and lowest impact parameters for tunnel convergence are tunnel depth and tunnel width, respectively.

A novel method for predicting protein subcellular localization based on pseudo amino acid composition

  • Ma, Junwei;Gu, Hong
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.670-676
    • /
    • 2010
  • In this paper, a novel approach, ELM-PCA, is introduced for the first time to predict protein subcellular localization. Firstly, Protein Samples are represented by the pseudo amino acid composition (PseAAC). Secondly, the principal component analysis (PCA) is employed to extract essential features. Finally, the Elman Recurrent Neural Network (RNN) is used as a classifier to identify the protein sequences. The results demonstrate that the proposed approach is effective and practical.

Prediction and analysis of acute fish toxicity of pesticides to the rainbow trout using 2D-QSAR (2D-QSAR방법을 이용한 농약류의 무지개 송어 급성 어독성 분석 및 예측)

  • Song, In-Sik;Cha, Ji-Young;Lee, Sung-Kwang
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.544-555
    • /
    • 2011
  • The acute toxicity in the rainbow trout (Oncorhynchus mykiss) was analyzed and predicted using quantitative structure-activity relationships (QSAR). The aquatic toxicity, 96h $LC_{50}$ (median lethal concentration) of 275 organic pesticides, was obtained from EU-funded project DEMETRA. Prediction models were derived from 558 2D molecular descriptors, calculated in PreADMET. The linear (multiple linear regression) and nonlinear (support vector machine and artificial neural network) learning methods were optimized by taking into account the statistical parameters between the experimental and predicted p$LC_{50}$. After preprocessing, population based forward selection were used to select the best subsets of descriptors in the learning methods including 5-fold cross-validation procedure. The support vector machine model was used as the best model ($R^2_{CV}$=0.677, RMSECV=0.887, MSECV=0.674) and also correctly classified 87% for the training set according to EU regulation criteria. The MLR model could describe the structural characteristics of toxic chemicals and interaction with lipid membrane of fish. All the developed models were validated by 5 fold cross-validation and Y-scrambling test.

Application of Text-Classification Based Machine Learning in Predicting Psychiatric Diagnosis (텍스트 분류 기반 기계학습의 정신과 진단 예측 적용)

  • Pak, Doohyun;Hwang, Mingyu;Lee, Minji;Woo, Sung-Il;Hahn, Sang-Woo;Lee, Yeon Jung;Hwang, Jaeuk
    • Korean Journal of Biological Psychiatry
    • /
    • v.27 no.1
    • /
    • pp.18-26
    • /
    • 2020
  • Objectives The aim was to find effective vectorization and classification models to predict a psychiatric diagnosis from text-based medical records. Methods Electronic medical records (n = 494) of present illness were collected retrospectively in inpatient admission notes with three diagnoses of major depressive disorder, type 1 bipolar disorder, and schizophrenia. Data were split into 400 training data and 94 independent validation data. Data were vectorized by two different models such as term frequency-inverse document frequency (TF-IDF) and Doc2vec. Machine learning models for classification including stochastic gradient descent, logistic regression, support vector classification, and deep learning (DL) were applied to predict three psychiatric diagnoses. Five-fold cross-validation was used to find an effective model. Metrics such as accuracy, precision, recall, and F1-score were measured for comparison between the models. Results Five-fold cross-validation in training data showed DL model with Doc2vec was the most effective model to predict the diagnosis (accuracy = 0.87, F1-score = 0.87). However, these metrics have been reduced in independent test data set with final working DL models (accuracy = 0.79, F1-score = 0.79), while the model of logistic regression and support vector machine with Doc2vec showed slightly better performance (accuracy = 0.80, F1-score = 0.80) than the DL models with Doc2vec and others with TF-IDF. Conclusions The current results suggest that the vectorization may have more impact on the performance of classification than the machine learning model. However, data set had a number of limitations including small sample size, imbalance among the category, and its generalizability. With this regard, the need for research with multi-sites and large samples is suggested to improve the machine learning models.

Object Detection from Mongolian Nomadic Environmental Images

  • Perenleilkhundev, Gantuya;Batdemberel, Mungunshagai;Battulga, Batnyam;Batsuuri, Suvdaa
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.173-178
    • /
    • 2019
  • Mongolian historical and cultural monuments on settlement areas of stone inscriptions, stone images, rock-drawings, remains of cities, architecture are still telling us their stories. These monuments depict the understanding of the word, philosophical and artistic outlook, beliefs, religion, national art, language, culture and traditions of Mongols [1]. Nowadays computer science, especially computer vision is applying in the other science fields. The main problem is how to apply and which algorithm can detect and classify the objects correctly. In this paper, we propose a method to detect object from Mongolian nomadic environment images. This work proposes a method for object detection that is the combination of the binary operations in the edge detection results. We found out the best method and parameters of state-of-the-art machine learning algorithms. In experimental result, we evaluate our results with 10-fold cross validation and split 66% strategies.

A Comparative Study of Local Features in Face-based Video Retrieval

  • Zhou, Juan;Huang, Lan
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.1
    • /
    • pp.24-31
    • /
    • 2017
  • Face-based video retrieval has become an active and important branch of intelligent video analysis. Face profiling and matching is a fundamental step and is crucial to the effectiveness of video retrieval. Although many algorithms have been developed for processing static face images, their effectiveness in face-based video retrieval is still unknown, simply because videos have different resolutions, faces vary in scale, and different lighting conditions and angles are used. In this paper, we combined content-based and semantic-based image analysis techniques, and systematically evaluated four mainstream local features to represent face images in the video retrieval task: Harris operators, SIFT and SURF descriptors, and eigenfaces. Results of ten independent runs of 10-fold cross-validation on datasets consisting of TED (Technology Entertainment Design) talk videos showed the effectiveness of our approach, where the SIFT descriptors achieved an average F-score of 0.725 in video retrieval and thus were the most effective, while the SURF descriptors were computed in 0.3 seconds per image on average and were the most efficient in most cases.

Evaluation of Hemiplegic Gait Using Accelerometer (가속도센서를 이용한 편마비성보행 평가)

  • Lee, Jun Seok;Park, Sooji;Shin, Hangsik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1634-1640
    • /
    • 2017
  • The study aims to distinguish hemiplegic gait and normal gait using simple wearable device and classification algorithm. Thus, we developed a wearable system equipped three axis accelerometer and three axis gyroscope. The developed wearable system was verified by clinical experiment. In experiment, twenty one normal subjects and twenty one patients undergoing stroke treatment were participated. Based on the measured inertial signal, a random forest algorithm was used to classify hemiplegic gait. Four-fold cross validation was applied to ensure the reliability of the results. To select optimal attributes, we applied the forward search algorithm with 10 times of repetition, then selected five most frequently attributes were chosen as a final attribute. The results of this study showed that 95.2% of accuracy in hemiplegic gait and normal gait classification and 77.4% of accuracy in hemiplegic-side and normal gait classification.

An Improvement of AdaBoost using Boundary Classifier

  • Lee, Wonju;Cheon, Minkyu;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.166-171
    • /
    • 2013
  • The method proposed in this paper can improve the performance of the Boosting algorithm in machine learning. The proposed Boundary AdaBoost algorithm can make up for the weak points of Normal binary classifier using threshold boundary concepts. The new proposed boundary can be located near the threshold of the binary classifier. The proposed algorithm improves classification in areas where Normal binary classifier is weak. Thus, the optimal boundary final classifier can decrease error rates classified with more reasonable features. Finally, this paper derives the new algorithm's optimal solution, and it demonstrates how classifier accuracy can be improved using the proposed Boundary AdaBoost in a simulation experiment of pedestrian detection using 10-fold cross validation.

Hybridized Decision Tree methods for Detecting Generic Attack on Ciphertext

  • Alsariera, Yazan Ahmad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.56-62
    • /
    • 2021
  • The surge in generic attacks execution against cipher text on the computer network has led to the continuous advancement of the mechanisms to protect information integrity and confidentiality. The implementation of explicit decision tree machine learning algorithm is reported to accurately classifier generic attacks better than some multi-classification algorithms as the multi-classification method suffers from detection oversight. However, there is a need to improve the accuracy and reduce the false alarm rate. Therefore, this study aims to improve generic attack classification by implementing two hybridized decision tree algorithms namely Naïve Bayes Decision tree (NBTree) and Logistic Model tree (LMT). The proposed hybridized methods were developed using the 10-fold cross-validation technique to avoid overfitting. The generic attack detector produced a 99.8% accuracy, an FPR score of 0.002 and an MCC score of 0.995. The performances of the proposed methods were better than the existing decision tree method. Similarly, the proposed method outperformed multi-classification methods for detecting generic attacks. Hence, it is recommended to implement hybridized decision tree method for detecting generic attacks on a computer network.

Bender Gestalt Test Image Recognition with Convolutional Neural Network (합성곱 신경망을 이용한 Bender Gestalt Test 영상인식)

  • Chang, Won-Du;Yang, Young-Jun;Choi, Seong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.455-462
    • /
    • 2019
  • This paper proposes a method of utilizing convolutional neural network to classify the images of Bender Gestalt Test (BGT), which is a tool to understand and analyze a person's characteristic. The proposed network is composed of 29 layers including 18 convolutional layers and 2 fully connected layers, where the network is to be trained with augmented images. To verify the proposed method, 10 fold validation was adopted. In results, the proposed method classified the images into 9 classes with the mean f1 score of 97.05%, which is 13.71%p higher than a previous method. The analysis of the results shows the classification accuracy of the proposed method is stable over all the patterns as the worst f1 score among all the patterns was 92.11%.