• Title/Summary/Keyword: 10 injection

Search Result 8,214, Processing Time 0.035 seconds

Investigation on the Non-linear Injection Characteristics of GDI injector using 1D Simulation (1D 시뮬레이션 기반 GDI 인젝터의 비선형적 분사 특성 해석에 대한 연구)

  • Jinwoo Lee;Seoksu Moon;Donghan Hur;Jinsuk Kang
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.169-175
    • /
    • 2023
  • Multi-injection scheme is being applied to GDI combustion to reduce PM and PN emission to meet the EU7 regulation. However, very short injection duration encounters the ballistic injection region, which injection quantity does not increase linearly with injection duration when applying multi-injection. In this study, numerical studies were conducted to reveal the cause of ballistic injection and the effect of design parameters on ballistic region using 1-D simulation, AMESim. Injection rate and injection quantity were compared with experiment to validate the established model, which showed the accuracy with 10% error. The model revealed that the tendency of ballistic region coincides with the needle motion behavior, which means that parameters at the upper part of needle such as electro-magnetic force, needle spring force and needle friction force have dominant effect on ballistic injection. To figure out the effect of electro-magnetic and needle friction force on ballistic, those parameters were varied to plus and minus 10% with model. The result showed that those parameters clearly changed the ballistic region characteristics, however, the impact became insignificant for outside of ballistic region, which means that the ballistic injection is mainly influenced by initial motion of injector needle.

A Study on Combustion and Emission Characteristics of Diesel-DME Blended Fuels Using Pilot Injection in DICI Engine (직접분사식 압축착화엔진에서 Pilot분사에 따른 Diesel-DME 혼합연료의 연소 및 배기특성에 관한 연구)

  • Jeong, Jaehoon;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.55-64
    • /
    • 2014
  • This work was investigated on pilot injection strategy of blended fuels(Diesel-DME) for combustion and emissions in a single cylinder direct injection compression ignition engine. Diesel and DME were blended by the method of weight ratio. Weight ratios for diesel and DME were 95:05 and 90:10 respectively. dSOI between main and pilot injection timing was varied. A total amount of injected fuels(single injection) was adjusted to obtain the fixed BMEP as 4.2 bar in order to compare with the fuel conditions. Also, the amount of pilot injection fuel was varied by 5%, 10% and 20% of total injection fuel. The engine was equipped with common rail and injection pressure is 700 bar at 1200 rpm. As a result, when mixing ratio increase, indicated thermal efficiency was increased in comparison with DD 100 and CO, THC and smoke were lower than DD 100. The influence of reducing NOx by pilot injection was more effective than DD 100. When pilot injection quantity increase, abrupt increase of NOx was occured at pilot injection quantity of 20%.

3-Dimensional Analysis for Film Cooling adjacent Injection Hole (분사구 인접영역에서의 막냉각에 관한 3차원 해석)

  • 이용덕;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2590-2600
    • /
    • 1993
  • The present paper describes numerical predictions for the film cooling effectiveness from a row of hole at various injection ratios and injection alngles.Numerical calculations were performed to investigate film cooling effectiveness and the characteristics of flow and temperature distributions in the region near the downstream of injection hole including the region of adverse pressure gradient. The elliptic 3-dimensional governing equations with variable thermal properties were solved by SIMPLE algorithm. The results showed that the presence of adverse pressure gradient in the region near the downstream of injection hole induces large temperature gradient. At injection angle of $35^{\circ}$ the average film cooling effectiveness was increased as increased of injection ratio up to 1.0. At injection angle of $90^{\circ}$ however, the average film cooling effectiveness was decreased from injection ratio larger than 0.4.

Combustion Characteristics of Gasoline Direct Injection Engine with Water Injection into Intake Port under Low Engine-Load Operating Condition (낮은 엔진 부하의 운전조건에서 흡기포트 내 물 분사에 따른 가솔린 직접분사 엔진의 연소 특성)

  • Jeun, Haegwang;Lee, Kyung-Hwan;Choi, Myungsik;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.96-101
    • /
    • 2018
  • The purpose of this study is to investigate the effect of water injection on combustion characteristics of gasoline direct injection (GDI) engine with turbo-charger under low-load operating condition. The test engine used in this study has four-cylinder and 10.2 of compression ratio. In order to study the effect of water injection ratio on combustion characteristics, the water was injected into the intake port from 10% to 50%, based on fuel injection quantity. From the experiment, it revealed that the water injection induced the improvement of fuel economy because of the advance of spark-timing by the reduction of in-cylinder temperature. In addition, the water injection caused the prolong of extension of the ignition delay and slight increase of burn duration.

Study on the Injection Characteristics using Injection Rate in a Direct-injection Gasoline Injector with Multi-hole (분사율을 이용한 직접 분사식 다공 가솔린 인젝터의 분사특성 연구)

  • Park, Jeonghyun;Shin, Dalho;Park, Su Han
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • This paper presents an experimental study on the GDI injector with Bosch method. The injection characteristics, such as the injection quantity, the injection rate, the maximum velocity of the nozzle exit and the injection delay were studied through the change of the injection pressure, the tube pressure and energizing duration in injection rate measurement device using nheptane. The injection quantity is increased by increasing injection pressure, decreasing tube pressure or increasing energizing duration. As the difference of the injection quantity changed, the shape of injection rate was moved with a constant form. The maximum velocity of the nozzle exit showed a tendency to increase as the injection pressure is increased. However, tube pressure did not affect. Overall, it was confirmed that the closing delay is longer than the opening delay in all conditions. As the injection pressure increased, the result has a tendency to decrease the closing delay, it did not affect the opening delay. Reduction of the closing delay showed the reduction of the injection duration. the tube pressure and energizing duration did not affect the injection delay (opening delay, closing delay).

Studies on the Development of Antihypertensive Agents from Korean Crude Drugs(III) -Influence of Eucommial Cortex of Korea on the Blood Pressure Responses of Rabbits- (혈압강하제 국산 자원생약의 개발에 관한 연구(III) -한국산 두중(杜仲)의 가토(家兎) 혈압(血壓)에 미치는 영향-)

  • Chung, Myung-Hyun;Park, Chung-Wan
    • Korean Journal of Pharmacognosy
    • /
    • v.6 no.1
    • /
    • pp.39-42
    • /
    • 1975
  • Influence of Eucommiae Cortex in Korea on the blood pressure of the rabbit was examined, 1) The intravenous injection of 3 mg/kg, 10 mg/kg and 30 mg/kg of the water extract to the rabbit decreased its blood pressure to $9.7\;{\pm}\;1.9,\;26.4\;{\pm}\;1.7\;and \;35.5\;{\pm}\;2.7\;mmHg$. respectively. 2) The intravenous injection of 10 mg/kg of the water extract did not show any remarkable influence to the blood pressure caused by the intravenous injection of acetylcholine $10^{-8}\;g/kg\; and \;10^{-7}\;g/kg$. 3) The intravenous injection of the water extract after the intravenous injection atropine 2mg/kg did not show any remarkable change to the blood pressure 4) The intravenous injection of the water extract after the intravenous injection of propranolol 2mg/kg slightly decreased the blood pressure.

  • PDF

Numerical Study of Combustion Characteristics in CNG DI Engine using Gaseous Sphere Injection Model (기체구 분사 모델을 이용한 CNG DI 엔진의 연소특성 수치해석)

  • Choi, Mingi
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.171-177
    • /
    • 2019
  • This paper describes numerical study of combustion characteristics in CNG(compressed natural gas) DI(direct injection) engine using gaseous sphere injection model. Simulations were conducted using KIVA-3V Release 2 code. Gaseous sphere injection model, which is modified model of liquid fuel injection, was used to simulate the CNG direct injection. Until now, a very fine mesh smaller than the injector nozzle has been required to resolve the gas-jet inflow boundary. However, the gaseous sphere injection model simulates gaseous fuel injection using a coarse mesh. This model injects gaseous spheres as in liquid fuel injection and the gaseous spheres evaporate together without the latent heat of evaporation. Therefore, it does not require a very fine mesh and reduce calculation time. Combustion simulation were performed under various injection timings and injection pressures.

A Study on Transient Injection Rate Measurement of Gas Fuels Using Force Sensor (힘센서를 이용한 기상 연료의 과도적 분사율 계측에 관한 연구)

  • Jaehyun, Lee;Gyuhan, Bae;Youngmin, Ki;Seoksu, Moon
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.181-187
    • /
    • 2022
  • For carbon neutrality, direct-injection hydrogen engines are attracting attention as a future power source. It is essential to estimate the transient injection rate of hydrogen for the optimization of hydrogen injection in direct injection engines. However, conventional injection rate measurement techniques for liquid fuels based on the injection-induced fuel pressure change in a test section are difficult to be applied to gaseous fuels due to the compressibility of the gas and the sealing issue of the components. In this study, a momentum flux measurement technique is introduced to obtain the transient injection rate of gaseous fuels using a force sensor. The injection rate calculation models associated with the momentum flux measurement technique are presented first. Then, the volumetric injection rates are estimated based on the momentum flux data and the calculation models and compared with those measured by a volumetric flow rate meter. The results showed that the momentum flux measurement can detect the injection start and end timings and the transient and steady regimes of the fuel injection. However, the estimated volumetric injection rates showed a large difference from the measured injection rates. An alternative method is suggested that corrects the estimated injection rate results based on the measured mean volumetric flow rates.

The Effect of Split Injections on the Stability of Idle Combustion and Emissions Characteristic in a Gasoline Direct Injection Engine (GDI 엔진의 분할 분사가 아이들 연소 안정 및 배출물 특성에 미치는 영향)

  • Roh, H.G.
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.221-226
    • /
    • 2014
  • This paper described the effect of split injections on the stability of combustion and emission characteristics in a direct injection gasoline engine at various operating conditions. In order to investigate the influence of direct injection gasoline engine, the fuel injection timing was varied direct fuel injection at various fuel pressure. The experimental apparatus consisted of GDI engine with 4 cylinder, EC dynamometer, injection control system, and exhaust emissions analyzer. The emission and combustion characteristics were analyzed for the fuel injection timing and fuel injection pressure strategies. It is revealed that CO and HC emissions are dramatically decreased at advanced injection timing. Also, engine performance is increased at increase fuel injection pressure.

Simulation Injection Mass with Variable Injection Condition in GDI Engine using AMESim (AMESim을 이용한, GDI 엔진에서 연료의 분사조건 변화에 따른 분사량 변화 예측)

  • Shin, Suk Shin;Song, Jingeun;Park, Jongho
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • In case of GDI engine, shape of injected fuel and injection mass are one of the most important factors for good fuel efficiency and power. But it should be too inefficient and difficult to acquire injection mass data by experiment because condition in engine vary with temperature, pressure, and so on. So, this paper suggests the AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) as simulation program to calculate injection mass. For both simulation and experiment, n-heptane is used as fuel. In AMESim, I modeled the GDI injector and simulated several cases. In experiment, I acquired the injection mass using Bosch method to apply ambient pressure. The AMESim show reasonable result in comparison with experimental data especially at injection pressure 15 MPa. Other conditions are also in good accord with experimental data but error is a little bit large because the injection mass is so low.