• Title/Summary/Keyword: 10% NaCl solution

Search Result 868, Processing Time 0.022 seconds

Effect of NaCl/Monosodium Glutamate (MSG) Mixture on the Sensorial Properties and Quality Characteristics of Model Meat Products

  • Chun, Ji-Yeon;Kim, Byong-Soo;Lee, Jung-Gyu;Cho, Hyung-Yong;Min, Sang-Gi;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.34 no.5
    • /
    • pp.576-581
    • /
    • 2014
  • Sodium chloride is an important ingredient added to most of foods which contributes to flavor enhancement and food preservation but excess intake of sodium chloride may also cause various diseases such as heart diseases, osteoporosis and so on. Therefore, this study was carried out to investigate the effect of monosodium glutamate (MSG) as a salty flavor enhancer on the quality and sensorial properties of the NaCl/MSG complex and actual food system. For characterizing the spray-dried NaCl/MSG complex, surface dimension, morphology, rheology, and saltiness intensity were estimated by increasing MSG (0-2.0%) levels at a fixed NaCl concentration (2.0%). MSG levels had no effect of the characteristics of the NaCl/MSG complex, although the addition of MSG increased the surface dimension of the NaCl/MSG complex significantly (p<0.05). Furthermore, the effect of MSG on enhancing the salty flavor was not observed in the solution of the NaCl/MSG complex. In the case of an actual food system, model meat products (pork patties) were prepared by replacing NaCl with MSG. MSG enhanced the salty flavor, thereby increasing overall acceptability of pork patties. Replacement of NaCl with MSG (<1.0%) did not result in negative sensorial properties of pork patties, although quality deterioration such as high cooking loss was found. Nevertheless, MSG had a potential application in meat product formulation as a salty flavor enhancer or a partial NaCl replacer when meat products were supplemented with binding agents.

Changes in Root Water Uptake and Chlorophyll Fluorescence of Rice (Oryza sativa L. cv. Dongjin) Seedling under NaCl Stress (NaCl 스트레스에 따른 벼 유식물의 뿌리 수분흡수와 엽록소형광의 변화)

  • Chun, Hyun-Sik
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.154-161
    • /
    • 2008
  • The physiological and photochemical responses of rice seedling to NaCl stress were investigated through measuring leaf relative water content (RWC), root water uptake and chlorophyll fluorescence. When plants were exposed to increased salinity stress, the visual symptoms of injury were significant at ${\geq}$500 mM NaCl concentration for 4 and 5 day stress periods. The differences in Fv/Fm between control treatment and plants treated with 500 mM and 1,000 mM NaCl were evident after 5 day and 4 day, respectively, whereas in root water uptake its effect was observed at 500 mM and 1,000 mM NaCl at 2 day of salt-stressed periods. Leaf RWC in salt-stressed plants decreased gradually with increasing salinity in exogenous solution and duration of salt stress, and these decrease showed leaf RWC of 58-68% atduration over 2 day stress of 1,000 mM NaCl treatment and 88% at 1 day stress. NaCl stress led to a significant inhibition of the light-induced greening in etiolated rice plants, especially in 4 and 5 day salt-stressed plants, which linearly decreased with NaCl concentration ($R^2$=0.812 and 0.918, respectively). The effects of NaCl stress in rice seedlings indicate that water uptake in root is more sensitive to increasing NaCl concentration and stress duration than Fv /Fm in leaves compared with the same NaCl concentration.

Effect of the change of second phase hardness on corrosion fatigue behavior of dual phase steel in 3% nacl solution (3% NaCl 수용액중에서 복합조직강의 부식피로거동에 미치는 제2상 속도변화의 영향)

  • 오세욱;김웅집
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.85-93
    • /
    • 1992
  • The only hardness of 2nd phase of martensite in dual phase steel which was composed of the martensite and ferrite was changed. Fatigue test was conducted by cantilever type of self-made rotated bending fatigue testing machine. The corrosion fatigue fracture behaviors of dual phase steel were investigated in 3% NaCl solution at $N_f$ = $1.5\times$$10^5$ $N_f$=1.0 $\times$ $10^6$ cycles. The fatigue strength was increased with increasing the hardness of 2nd phase. The size and number of corrsion pits were influenced by the 2nd phase hardness and pits remain constant in size just after they were transited into cracks. The life of crack initiation was effected by stress level. The shape of relation of $\Delta$K and da/dn has smaller scattering in it in 3% NaCl solution than that in air. The higher the 2nd phase hardness is, the higher the corrosion fatigue life becomes. Corrosion fatigue fracture behavior was effected by mechanics in case of $N_f$=1.5$\times$10$^5$$N_f$=1.5$\times$10$^6$ cycles.

  • PDF

Stress Corrosion Cracking Behavior of Alloy 690 in Crevice Environment (Pb + S + Cl) in a Steam Generator Tube (증기발생기 전열관 틈새복합환경(Pb+S+Cl)에서 Alloy 690의 응력부식균열거동)

  • Shin, Jung-Ho;Lim, Sang-Yeop;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.116-122
    • /
    • 2018
  • The secondary coolant of a nuclear power plant has small amounts of various impurities (S, Pb, and Cl, etc.) introduced during the initial construction, maintenance, and normal operation. While the concentration of impurities in the feed water is very low, the flow of the cooling water is restricted, so impurities can accumulate on the Top of Tubesheet (TTS). This environment is chemically very complicated and has a very wide range of pH from acidic to alkaline. In this study, the characteristics of the oxide and the mechanism of stress corrosion cracking (SCC) are investigated for Alloy 690 TT in alkaline solution containing Pb, Cl, and S. Reverse U-bend (RUB) specimens were used to evaluate the SCC resistance. The test solution comprises 3m NaCl + 500ppm Pb + 0.31m $Na_2SO_4$ + 0.45m NaOH. Experimental results show that Alloy 690 TT of the crevice environment containing Pb, S, and Cl has significant cracks, indicating that Alloy 690 is vulnerable to stress corrosion cracking under this environment.

Optimal Temperature and Salt Concentration for Low Salt Dongchimi Juice Preparation (저염 동치미 쥬스의 제조를 위한 최적 발효온도 및 소금농도)

  • 엄대현;장학길;김종군;김우정
    • Korean journal of food and cookery science
    • /
    • v.13 no.5
    • /
    • pp.578-584
    • /
    • 1997
  • Fermentation temperature and salt concentration of Dongchimi were studied for the development of low salt Dongchimi juice. The juice was prepared by soaking the radish in brine solution of 0.3∼3.0% and fermented at the temperature range of 10∼30$^{\circ}C$. The fermentation proceeded faster at higher temperature. However, the salt concentration effect was dependent on the temperature. Fermentation in 3.0% NaCl solution resulted the fastest reach to pH 3.8 followed by 0.5% NaCl at 10 and 20$^{\circ}C$, while higher NaCl concentration caused a decrease in the fermentation rate at 30$^{\circ}C$. Comparison of flavor of the juice of pH 3.9 showed that fresh sourness was high in the juice prepared at 20$^{\circ}C$ and in 0.5% NaCl. The preference test also showed the juice of pH 3.8∼4.0 fermented in 0.5% NaCl at 20$^{\circ}C$ to be the most preferable one. The salt concentration lower than 0.5% at 20$^{\circ}C$ resulted in faster fermentation and high values in turbidity. However 0.5% NaCl was scored high in flavor acceptability.

  • PDF

Alkaline Hydrolysis of Polyester/Acetate Union Fabric (폴리에스테르/아세테이트 혼용직물의 알칼리 가수분해)

  • Ju, Young Min;Kim, Myung Kyoon;Ahn, Kyoung Ryoul;Lee, Jeong Min
    • Textile Coloration and Finishing
    • /
    • v.8 no.4
    • /
    • pp.42-51
    • /
    • 1996
  • Alkaline hydrolysis to improve the hand of PET/acetate union fabric was studied in relation to skin saponification and retarding effect of salts on the alkaline hydrolysis of cellulose acetate fiber, accelerating effect of salts on the alkaline hydrolysis of PET fiber, and changes of total hand value(T.H.V) of PET/acetate union fabric treated with alkali/salt solution. It was found that the rate of saponification of acetate was delayed by the addition of salts such as LiCl, NaCl and CH$_{3}$COONa into NaOH solution below 10 minutes. The rate of shrinkage of acetate fabric treated with 5g/l NaOH solution at 9$0^{\circ}C$ and 60 minutes showed 20 % but it was decreased 8% by. the addition of 120g/l Concentration of inorganic salts. We could know that the rate of alkaline hydrolysis of filament yarn treated with alkali solution at 9$0^{\circ}C$ and 60 minutes was delayed about 3 % using 2,000T/M of hard twist yarn, especially acetate filament treated with alkali solution at 9$0^{\circ}C$ and 10 minutes was delayed about 10%. T.H.V. of PET/acetate union fabric was increased from 2.77 to 3.04~3.18 by the addition of salts into alkali solution.

  • PDF

Synthesis of Iron Nanopowder from FeCl3 Solution by Chemical Reduction Method for Recycling of Spent Neodymium Magnet (네오디뮴 폐자석 재활용을 위한 화학환원법을 이용한 철 나노 분말 제조)

  • Ha, Yonghwang;Gang, Ryun-Ji;Choi, Seung-Hoon;Yoon, Ho-Sung;Ahn, Jong-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6187-6195
    • /
    • 2012
  • Recycling process of iron should be developed for efficient recovery of neodymium(Nd), rare metal, from acid-leaching solution of neodymium magnet. In this study, $FeCl_3$ solution as iron source was used for synthesis of iron nanoparticle with the condition of various factors, etc, reductant, surfactant. $Na_4O_7P_2$ and polyvinylpyrrolidone(PVP) as surfactants, $NaBH_4$ as reductant, and palladium chloride($PdCl_2$) as a nucleation seed were used. Iron powder was analyzed with instruments of XRD, SEM and PSA for measuring shape and size. Iron nanoparticles were made at the ratio of 1 : 5(Fe (III) : $NaBH_4$) after 30 min of reduction time. Size and shape of iron particles synthesized were round-form and 50 nm ~ 100 nm size. Zeta-potential of iron at the 100 mg/L of $Na_4O_7P_2$ was negative value, which is good for dispersion of metal particle. When $Na_4O_7P_2$(100 mg/L), PVP($FeCl_3$ : PVP = 1 : 4, w/w) and Pd($FeCl_3$ : $PdCl_2$ = 1 : 0.001, w/w) were used, iron nanoparticles which are round-shape, well-dispersed, near 100 nm-sized can be made.

Properties on the Quality Characteristics of Bread Added with Angelica keiskei Koidz Flour (신선초가루를 첨가한 식빵의 품질 특성)

  • 최옥자;김용두;강성구;정현숙;고무석;이홍철
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.118-125
    • /
    • 1999
  • Effects of adding of Angelica keiskei Koidz flour on the quality characteristics of bread were inves tigated. The content of total dietary fiber was 31.89% in flour of Angelica keiskei Koidz leaf and 43.37 % in that of stem. The content of insoluble dietary fiber increased by blanching, but those of soluble dietary fiber and insoluble dietary fiber increased by steeping in NaCl solution. In the results of sensory evaluation of Angelica keiskei Koidz flour, leaf steeped in NaCl solution and blanched stem showed good overall preference. With the addition of Angelica keiskei Koidz flour, water binding capacity and loaf weight increased, while the loaf volume decreased. The loaf volume of bread added with leaf steeped in NaCl solution and blanched stem were higher than those added with natural Angelica keiskei Koidz flour. The lightness and redness values decreased with the increase of Angelica keiskei Koidz flour content in bread but yellowness values increased. In the texture analyzer measurement for bread added with Angelica keiskei Koidz flour, hardness and springiness somewhat increased, while cohesiveness, gumminess and chewiness decreased. As the results of sensory evaluation of bread added with Angelica keiskei Koidz flour, the score of the breads added with 5% leaf steeped in NaCl solution and 5%, 10% blanched stem were somewhat lower than those of control bread. In terms of rate of addition of Angelica keiskei Koidz flour, the bread added with leaf at 5% level, natural stem at 5% level and stem by blanching at 5%, 10% level had good overall preference.

  • PDF

Development of On-Site Process for Refractory 2,4-Dichlorophenol Treatment (난분해성 2,4-Dichlorophenol 처리를 위한 원위치 처리 프로세스 개발 연구)

  • Park, Kyeong-Deok;Kim, Il-Kyu
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.42-49
    • /
    • 2016
  • This study showed that on-site ferrate(VI) solution was synthesized by wet oxidation method and applied aqueous 2,4-dichlorophenol(DCP) solution to evaluate the degradation efficiency. On-site ferrate(VI) solution was synthesized by putting $FeCl_3{\cdot}6H_2O$ in the strong alkali solution with NaClO and NaOH and applied DCP solution directly. DCP solution was extracted by the liquid-liquid method and analyzed by GC-ECD. The factors such as pH, DCP initial concentration, injected ferrate(VI) dosage, temperature were investigated. The optimum pH and temperature conditions of DCP degradation were obtained in neutral condition and $35^{\circ}C$. And the experimental results showed that DCP removal efficiency also increased with the decrease of DCP initial condition and the injected ferrate(VI) dosage.

Effect of Synthetic Hydrotalcite on Salt Water Resistance of Chloroprene rubber Foam (Synthetic Hydrotalcite가 클로로프렌 고무 발포체의 내염수성에 미치는 영향 연구)

  • Park, Eun Young;Seo, Eun Ho;Lim, Sung Wook
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.177-186
    • /
    • 2019
  • In this study, we investigated for synthetic hydrotalcite in chloroprene rubber foam. Experiments were carried out to find the optimum content ratio by controlling the contents of MgO and Hydrotalcite. Swelling test in toluene immersion was made to measure the crosslinking density of CR foams, and the cure properties were investigated with flat die rheometer and Mooney viscosity. The difference of hardness, tensile strength and elongation at break were observed after immersing in 7% NaCl or 21% NaCl solutions for a day and four days. In addition, the volume change and water content remaining in CR foam were measured after immersing NaCl solution. As content of MgO increased, the value of the cure torque tended to increase, but it was almost constant above 2phr of MgO. However, the Mooney viscosity decreased with increasing MgO content. The crosslinking density, determined by the swelling ratio, showed that the CR compound without MgO showed a higher degree of swelling. When the content of hydrotalcite/MgO was 3:2, it was the lowest volume change of CR form. Also, As the content of hydrotalcite decreased, the difference of mechanical properties before and after immersion NaCl solution increased.