• Title/Summary/Keyword: 10% NaCl solution

Search Result 868, Processing Time 0.023 seconds

Formation of Oxidants and Removal of Dye Rhodamine B using PbO2 Electrode (PbO2 전극을 이용한 산화제 생성과 염료 Rhodaime B 제거)

  • Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.194-199
    • /
    • 2011
  • This study has been carried out to evaluate the performance of $PbO_2$ electrode for the purpose of degradation of N,N-Dimethyl-4-nitrosoaniline (RNO, indicator of OH radical), generation of ozone and decolorization of Rhodamine B (RhB) in water. The effect of the applied current (0.2~1.2 A), electrolyte type (NaCl, KCl and $Na_2SO_4$), electrolyte concentration (0.0~2.5 g/L) and solution pH (3~11) were evaluated. Experimental results showed that RhB and RNO removal were increased with the increase of current, NaCl dosage and decrease of pH. Ozone generation tendencies appeared with the almost similar to the RhB and RNO degradation, except of solution pH (Ozone generation was increased with increase of pH). Optimum current for RhB degradation and consumption of electric power was 1.0 A. The RhB degradation with Cl type electrolyte were higher than that with the sulfate type. Optimum NaCl dosage for RhB degradation was 1.0 g/L.

Corrosion Behavior of Solution-Treated Mg-8%Al-X%Zn Casting Alloys (용체화처리된 주조용 Mg-8%Al-X%Zn 합금의 부식 거동)

  • Jun, Joong-Hwan;Hwang, In-Je
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.3
    • /
    • pp.126-133
    • /
    • 2015
  • The aim of this study is to investigate the effect of solution treatment on the corrosion behavior of Mg-8%Al-(0-1)%Zn casting alloys in 1M NaCl aqueous solution. After the solution treatment, all alloys showed single ${\alpha}$-(Mg) phase microstructure by dissolution of ${\beta}(Mg_{17}Al_{12})$ phase into the ${\alpha}$-(Mg) matrix. The $H_2$ evolution volume decreased with an increase in Zn content, which indicates that the addition of Zn plays a beneficial role in decreasing corrosion rate of the Mg-Al-Zn alloy in solution-treated state. The microstructural evaluations on the corrosion products and corroded surfaces after the immersion test in 1 M NaCl solution revealed that the incorporation of more $Al_2O_3$ and ZnO into the corrosion product, by which the penetration of $Cl^-$ ions is impeded, are thought to be responsible for the better corrosion resistance in relation with the Zn addition.

Effects of NaCl and n-Butanol on the Solubilization of 4-Halogenated Phenols in Aqueous Solution of TTAB (TTAB 수용액에서 4-할로겐화 페놀유도체의 가용화에 미치는 NaCl과 n-부탄올의 효과)

  • Lee, Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.517-523
    • /
    • 2014
  • The micellization of TTAB(tetradecyltrimethylammonium bromide) and the solubilization of 4-halogenated phenol isomers in aqueous solution of that surfactant in water have been studied by the UV-Vis spectrophotometric method. Those properties in aqueous solutions of NaCl and n-butanol have been also measured to determine the interactions between the micelle and 4-halogenated phenols and the solubilized sites of those molecules in the micelle. The results show that the values of ${\Delta}G^o_m$ and ${\Delta}G^o_s$ are all negative and the trends of those values depend on both the kinds and the concentrations of additives. Namely, by adding NaCl both ${\Delta}G^o_m$ and ${\Delta}G^o_s$ values are all decreasing, but by adding n-butanol the ${\Delta}G^o_m$ value decreases and the ${\Delta}G^o_s$ value increases.

The Reduced Steam Consumptions in the Evaporation Process Using a Vapor Recompression (증기 재압축을 활용한 증발공정에서 스팀 절감에 대한 연구)

  • Noh, Sang Gyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.225-231
    • /
    • 2016
  • In this study, modeling and optimization study have been performed to obtain $1,524.58kg\;h^{-1}$ of a solidified NaCl by evaporating a 21.0 wt% of NaCl aqueous solution in order to reduce the steam consumption from $3,139kg\;h^{-1}$ to $496kg\;h^{-1}$ using a two-stage evaporation and a vapor recompression processes. Aspen Plus release 8.8 at AspenTech was utilized for the modeling of two stage evaporation process and PRO/II with PROVISION release 9.4 at Schneider Electric was also used for the simulation of two-stage vapor recompression process with an inter-cooler. For the simulation of the evaporation process containing NaCl aqueous solution, Aspen Plus release 8.8 at AspenTech Inc. was utilized and for the modeling of vapor recompression process PRO/II with PROVISION release at Schneider Electric Inc. For the vapor recompression process, single stage compression and two-stage compression system was compared.

Activated Carbon-Embedded Reduced Graphene Oxide Electrodes for Capacitive Desalination

  • Tarif Ahmed;Jin Sun Cha;Chan-gyu Park;Ho Kyong Shon;Dong Suk Han;Hyunwoong Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.222-230
    • /
    • 2023
  • Capacitive deionization of saline water is one of the most promising water purification technologies due to its high energy efficiency and cost-effectiveness. This study synthesizes porous carbon composites composed of reduced graphene oxide (rGO) and activated carbon (AC) with various rGO/AC ratios using a facile chemical method. Surface characterization of the rGO/AC composites shows a successful chemical reduction of GO to rGO and incorporation of AC into rGO. The optimized rGO/AC composite electrode exhibits a specific capacitance of ~243 F g-1 in a 1 M NaCl solution. The galvanostatic charging-discharging test shows excellent reversible cycles, with a slight shortening in the cycle time from the ~260th to the 530th cycle. Various monovalent sodium salts (NaF, NaCl, NaBr, and NaI) and chloride salts (LiCl, NaCl, KCl, and CsCl) are deionized with the rGO/AC electrode pairs at a cell voltage of 1.3 V. Among them, NaI shows the highest specific adsorption capacity of ~22.2 mg g-1. Detailed surface characterization and electrochemical analyses are conducted.

Study in the Respiratory Metabolism in Some Bivalves(II) on the Oxidative Metabolism and its Enzyme System in the Gill Tissue of the Fresh Water Mussel, Cristaria plicata spatiosa (CLESSIN) (패류의 호흡대사에 관한 연구(II) 담수산 패류, Cristaria plicata spatiosa (CLESSIN), 아가미 조직의 산화적 대사와 그 효소분에 대하여)

  • 한문희;김동준;최희정
    • The Korean Journal of Zoology
    • /
    • v.4 no.1
    • /
    • pp.7-12
    • /
    • 1961
  • 1) Respiratory metabolism patterns and its enzyme systems in the gill tissue of the fresh water mussels, Cristaria plicata were investigated through the examination on the effects of respiratory enzyme inhibitors, (KCN, NAF) and succinoxidase assay, while studying the effects of neutral salts (NaCL, KCL, CaCl2) and pH on oxygen consumption of the gill tissue. 2) In the limited concentration of KCL (0.3mM) and NaCl (0.4mM) solutions, oxygen consumption of the intact gill tissue was accelerated, but in CaCl2(0.5mM) solution, it showed no significant effect. The oxygen consumption was gradually decreased at the above concentrations of these limitations. The optimum pH for the respiration of the gill was 7.3. 3)Cyanide in 10-8M solution inhibited 88.8% of the respiration of the intact gill tissue. Methylene blue accelerated the respiration of the noral gill tissue, and slightly but significantly reversed the cyaniide poisoned respiration. 4)Oxygen consumption of the gill homogenate was apparently increased by the mixed addition of succinate, cytochrome c and activators (AlCl3 and CaCl2). This results suggested that succinoxidase system acts on the respiratory pattern of the gil tissue. 5) It was able to recognize that the enolase, which acts on the anaerobic glycolytic system, participated in the tissue respiration of the gill for NaF in 5$\times$10-2 M solution inhibited 55.5% of the respiration of the same intact tissue.

  • PDF

Enhanced Antibacterial Activity of Sodium Hypochlorite under Acidic pH Condition (산성 pH 조건에서 차아염소산나트륨의 항균 활성 향상)

  • Son, Hyeon-Bin;Bae, Won-Bin;Jhee, Kwang-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.211-217
    • /
    • 2022
  • Sodium hypochlorite (NaClO) is a disinfectant widely used in hospitals and food industries because of its antimicrobial activity against not only bacteria but also fungi and virus. The antibacterial activity of NaClO lies in the maintenance of a stable hypochlorous acid (HClO) concentration, which is regulated by pH of the solution. HClO can easily penetrate bacterial cell membrane due to its chemical neutrality and the antibacterial activity of NaClO is thought to depend on the concentration of HClO in solution rather than hypochlorite ions (ClO-). In this study, we investigated the antibacterial activity of NaClO according to pH adjustment by means of time kill test and assays of Reactive Oxygen Species (ROS) and adenosine triphosphate (ATP) concentration changes before and after NaClO treatment. We also investigated that the degree of cell wall destruction through field emission scanning electron microscopy (FE-SEM). Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) exposed to 5 ppm NaClO at pH 5 exhibited 99.9% mortality. ROS production at pH 5 was 48% higher than that produced at pH 7. In addition, the ATP concentration in E. coli and S. aureus exposed to pH 5 decreased by 94% and 91%, respectively. As a result of FE-SEM, it was confirmed that the cell wall was destroyed in the bacteria by exposing to pH 5 NaClO. Taken together, our results indicate that the antibacterial activity of 5 ppm NaClO can be improved simply by adjusting the pH.

Effects of C3A Content on Chloride Concentration in Pore Solution (C3A함유량이 세공용액 Cl 농도에 미치는 영향)

  • 소승영;박홍신;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.89-96
    • /
    • 1995
  • 본 연구는 시멘트 경화체 중의 Cl 고정화 메카니즘을 규명하는 연구의 일환으로 시멘트의 C3A 함유량에 따른 Cl 고정화 효과를 세공용액 분석방법에 의해 조사한 것으로 C3A함유량 0.46 9.65%의 4가지 시멘트와 C3A를 함유하지 않은 초속경 시멘트 페이스트를 밀봉용기내에서 양생시켜 재령 28일에 세공용액을 추출하여 세공용액 중의 Cl 과 OH 농도를 측정, C3A함유량이 Cl 고정화에 미치는 영향을 검토한 것이다. 연구결과 세공용액 중의 Cl 농도는 NaCl 혼입량에 관계없이 시멘트 중의 C3A량이 증가함에 따라 낮아져 시멘트 경화체 내에서 Cl 의 고정화에 C3A가 매우 효과적임을 알 수 있었다. 세공용액의 Cl /OH 는 Cl 혼입량이 시멘트 중량의 0.3%인 경우 강재부동태막을 파괴하는 0.3보다 낮았으며 X선회절분석에 의해 C3A에 의한 고정화 메카니즘은 프리델씨염(Friedel's salt)의 생성에 의함을 확인하였다.

Effect of Corrosion Atmosphere and Strain Rate on the Stress Corrosion Cracking of High Strength 7xxx Aluminum Alloy (고강도 7xxx 알루미늄 합금의 응력부식균열에 미치는 부식환경과 응력속도의 영향)

  • Yun, Yeo-Wan;Kim, Sang-Ha
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.121-128
    • /
    • 2008
  • High strength 7xxx aluminum alloys have been applied to automotive bump back beam of the some limited model for light weight vehicle. The aluminum bump back beam is manufactured through extrusion, bending and welding. The residual stress given on these processes combines with the corrosive atmosphere on the road spreaded with corrosive chemicals to melt snow to occur the stress corrosion cracking. The composition of commercial 7xxx aluminum has Zn/Mg ratio about 3 and Cu over 2 wt% for better strength and stress corrosion cracking resistivity. But this composition isn't adequate for appling to the automotive bump back beam with high resistance to extrusion and bad weldability. In this study the composition of 7xxx aluminum alloy was modified to high Zn/Mg ratio and low Cu content for better extrusion and weldability. To estimate the resistivity against stress corrosion cracking of this aluminum alloy by slow strain rate test, the corrosion atmosphere and strain rate separate the stress corrosion cracking from conventional corrosion must be investigated. Using 0.6 Mol NaCl solution on slow strain rate test the stress corrosion cracking induced fracture was not observed. By adding 0.3% $H_2O_2$ and 0.6M $Na_2SO_4$ to 1M NaCl solution, the corrosion potential and current density of polarization curve moved to active potential and larger current density, and on the slow strain rate test the fracture energy in solution was lower than that in pre-exposure. These mean the stress corrosion cracking induced fracture can be estimated in this 1M NaCl + 0.3% $H_2O_2$ + 0.6M $Na_2SO_4$ solution. When the strain rate was below $2{\times}10^{-6}$, the stress corrosion cracking induced fracture start to be observed.

Characteristic of Oxidants Production and Dye Degradation with Operation Parameters of Electrochemical Process (전기화학적 공정의 운전인자에 따른 산화제 생성과 염료 분해 특성)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1235-1245
    • /
    • 2009
  • The purpose of this study is to investigate electro-generation of free Cl, $ClO_2$, $H_2O_2$ and $O_3$ and degradation of Rhodamine B in solution using Ru-Sn-Sb electrode. Electrolysis was performed in one-compartment reactor using a dimensionally stable anode(DSA) of Ru-Sn-Sb/Ti as the working electrode. The effect of applied current (0.5-3 A), electrolyte type (NaCl, KCl, HCl, $Na_2SO_4$ and $H_2SO_4$) and concentration (0.5-2.5 g/L), air flow rate (0-3 L/min) and solution pH (3-11) was evaluated. Experimental results showed that concentration of 4 oxidants was increased with increase of applied current, however optimum current for RhB degradation was 2 A. The generated oxidant concentration and RhB degradation of the of Cl type-electrolyte was higher than that of the sulfate type. The oxidant concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.75 g/L. Optimum air flow rate for the oxidants generation and RhB degradation was 2 L/min. $ClO_2$ and $H_2O_2$ generation was decreased with the increase of pH, whereas free Cl and $O_3$ was not affected by pH. RhB degradation was increase with the pH decrease.